Giải các phương trình sau:
a) \(x^4-8x^2-9=0\)
b)\(x^4-7x^2-144=0\)
c) \(36x^4-13x^2+1=0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
- giải các bất phương trình sau:
a) (\(3x^2-7x+4\))(\(x^2+x+4\))\(>0\)
b) \(x^3-13x^2+42x-36>0\)
c) \(x\left(x+5\right)\le2\left(x^2+2\right)\)
a: =>(x-1)(3x-4)>0
=>x>4/3 hoặc x<1
b: =>x^3-3x^2-10x^2+30x+12x-36>0
=>(x-3)(x^2-10x+12)>0
Th1: x-3>0và x^2-10x+12>0
=>x>5+căn 13
TH2: x-3<0 và x^2-10x+12<0
=>x<3 và 5-căn 13<x<5+căn 13
=>3<x<5+căn 13
Giải các pt:
a) \(3x^3-8x^2-2x+4=0\)
b) x^4 - 8x^3 + 7x^2 + 36x - 36 =0
c) (x-1)(x+1)(x+3)(x+5) = 9
d) (x+1)^4 + (x+3)^4 = 2
Giải phương trình sau:
a) (2x+1)(x^2+2)=0 b) (x^2+4)(7x-3)=0
c) (x^2+x+1)(6-2x)=0 d) (8x-4)(x^2+2x+2)=0
a, \(\left(2x+1\right)\left(x^2+2\right)=0\)
TH1 : \(x=-\frac{1}{2}\); TH2 : \(x^2=-2\)vô lí vì \(x^2\ge0\forall x;-2< 0\)
b, \(\left(x^2+4\right)\left(7x-3\right)=0\)
TH1 : \(x^2=-4\)vô lí vì \(x^2\ge0\forall x;-4< 0\)
TH2 : \(x=\frac{3}{7}\)
c, \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
TH1 : \(x^2+x+1\ne0\)vì \(x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
TH2 : \(2x=6\Leftrightarrow x=3\)
d, \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
TH1 : \(x=\frac{1}{2}\)
TH2 : \(x^2+2x+2\ne0\)vì \(x^2+2x+1+1=\left(x+1\right)^2+1>0\)
dễ
vãi b b b b b b
a) Đề:..............
\(\Rightarrow\hept{\begin{cases}2x+1=0\\x^2+2=0\end{cases}\Rightarrow\hept{\begin{cases}2x=1\\x^2=-2\left(vl\right)\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\\end{cases}}}}\)
Vậy phương trình có nghiệm S = {1/2}
b) Đề:...............
\(\Rightarrow\hept{\begin{cases}x^2+4=0\\7x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-4\left(vl\right)\\7x=3\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{3}{7}\\\end{cases}}}\)
Vậy phương trình có nghiệm S = {3/7}
giải phương trình sau đặt biến phụ
1) 2x^3+7x^2+7x+2=0
2) x^3-8x^2-8x+1=0
3) x^5+2x^4+4x^2-3x+1=0
4) x^4+x^3+x^2+x+1=0
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải phương trình
a) x^4 - 2x + 1/2 = 0
b) x^4 - 8x - 7 = 0
c) x^6 - 7x^2 - căn6= 0
Bài 1: Giải phương trình:
x4-6x3-x2+54x-72=0 (biết rằng phương trình có một nghiệm là x=2)
Bài 2: Giải các phương trình:
a) x4-5x2+4=0
b) x4-2x3-6x2+8x+8=0
c) 2x4-13x3+20x2-3x-2=0
GIẢI NHANH GIÚP MÌNH VỚI Ạ....THANKS MỌI NGƯỜI❤
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(2x^3-9x^2+2x+1\)
\(=2x^3-x^2-8x^2+4x-2x+1\)
\(=x^2\left(2x-1\right)-4x\left(2x-1\right)-\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2-4x-1\right)\)
\(=\left(2x-1\right)\left(x^2-4x+4-5\right)\)
\(=\left(2x-1\right)\left[\left(x-2\right)^2-5\right]\)
.......
1/ Chứng minh phương trình vô nghiệm:
a) \(-16x^2-8x+4=0\)
b) \(-x^2+4x-4=0\)
2/ Giải phương trình sau:
\(\left(x^2-2x-4\right)\left(2x^2-8x-1\right)=0\)
Bài 1:
b: \(\Leftrightarrow x-2=0\)
hay x=2
Giải các phương trình sau :
\(a,x^4+2x^3-3x^2-8x-4=0\)
\(b,\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(c,2x^3+7x^2+7x+2=0\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)
\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2+3x^2+3x+2x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+2x+x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{2;-1;-2\right\}\)
Vậy....
c, \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x^3+1\right)+7x\left(x+1\right)=0\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2\left(x^2-x+1\right)+7x\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
Tập nghiệm của pt: \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)
b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\) (1)
Đặt: \(x^2-7=t\left(t\ge-7\right)\)
Khi đó (1) trở thành: \(\left(t+3\right)\left(t-3\right)=72\Leftrightarrow t^2-9=72\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\left(loai\right)\end{cases}}\)
\(t=9\Rightarrow x^2-7=9\Leftrightarrow x=\pm4\)
Tập nghiệm của pt là \(S=\left\{\pm4\right\}\)
a, \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}\)