Những câu hỏi liên quan
H24
Xem chi tiết
AQ
Xem chi tiết
NT
11 tháng 1 2022 lúc 18:30

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4

Bình luận (0)
LX
Xem chi tiết
NH
Xem chi tiết
AH
13 tháng 7 2020 lúc 9:52

Các bài này đều có phương pháp làm giống nhau

Bài 1:

Để pt có 2 nghiệm $x_1,x_2$ thì $\Delta=m^2-16\geq 0$

$\Leftrightarrow m\geq 4$ hoặc $m\leq -4(*)$

Áp dụng định lý Vi-et ta có: \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=4\end{matrix}\right.\)

Khi đó:

\(\frac{1}{x_1^4}+\frac{1}{x_2^4}=\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)^2-\frac{2}{(x_1x_2)^2}=\frac{(x_1^2+x_2^2)^2}{(x_1x_2)^4}-\frac{2}{(x_1x_2)^2}\)

\(=\frac{[(x_1+x_2)^2-2x_1x_2]^2}{(x_1x_2)^4}-\frac{2}{(x_1x_2)^2}=\frac{(m^2-8)^2}{256}-\frac{2}{16}=\frac{257}{256}\)

\(\Leftrightarrow (m^2-8)^2-32=257\)

\(\Leftrightarrow (m^2-8)^2=289\Rightarrow m^2-8=\pm 17\)

\(\Rightarrow m^2=25\Rightarrow m=\pm 5\) (đều thỏa mãn $(*))$

Vậy $m=\pm 5$

Bình luận (0)
AH
13 tháng 7 2020 lúc 9:57

Bài 3:

Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:

$\Delta'=9-(m-3)>0\Leftrightarrow m< 12$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=6\\ x_1x_2=m-3\end{matrix}\right.\)

Khi đó:

$(x_1-1)(x_2^2-5x_2+m-4)=2$

$\Leftrightarrow (x_1-1)(x_2^2-6x_2+m-3+x_2-1)=2$

$\Leftrightarrow (x_1-1)(x_2-1)=2$ (nhớ rằng $x_2^2-6x_2+m-3=0$ do $x_2$ là nghiệm của pt $x^2-6x+m-3=0$)

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=2$

$\Leftrightarrow m-3-6+1=2$

$\Leftrightarrow m=10$ (thỏa mãn)

Vậy $m=10$

Bình luận (0)
AH
13 tháng 7 2020 lúc 10:01

Bài 2:
Để pt có 2 nghiệm phân biệt thì:

$\Delta'=16-8(m^2+1)>0$

$\Leftrightarrow 2-(m^2+1)>0\Leftrightarrow m^2-1< 0$

$\Leftrightarrow -1< m< 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=1\\ x_1x_2=\frac{m^2+1}{8}\end{matrix}\right.\)

Khi đó:

$(4x_1+5)(4x_2+5)+19=0$

\(\Leftrightarrow 16x_1x_2+20(x_1+x_2)+44=0\)

\(\Leftrightarrow 2(m^2+1)+20+44=0\Leftrightarrow m^2=-33< 0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn ycđb

Bình luận (0)
MH
Xem chi tiết
NT
8 tháng 8 2023 lúc 23:23

Δ=(-4m)^2-4(4m^2-m+2)

=16m^2-16m^2+4m-8=4m-8

Để phương trình có hai nghiệm phân biệt thì 4m-8>0

=>m>2

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{\left(4m\right)^2-4\left(4m^2-m+2\right)}=2\)

=>\(\sqrt{16m^2-16m^2+4m-8}=2\)

=>\(\sqrt{4m-8}=2\)

=>4m-8=4

=>4m=12

=>m=3(nhận)

Bình luận (0)
DT
Xem chi tiết
HP
16 tháng 3 2022 lúc 16:41

Kiểm tra giúp mình yêu cầu thứ nhất nhé!

Có thể bạn tìm:

"Đề: Tìm m để phương trình (m2-1)x+2=m-1 nhận x=2 là nghiệm.

Giải: Thế x=2 vào phương trình đã cho, ta suy ra (m2-1).2+2=m-1 (vô nghiệm).

Không có giá trị nào của m để phương trình đã cho nhận x=2 là nghiệm. -Hết-".

Thế x=-1 vào phương trình đã cho, ta suy ra 3.(-1)2+4m.(-1)=8 \(\Rightarrow\) m=-5/4.

Bạn xem giúp mình yêu cầu cuối cùng nha!

Có thể bạn tìm:

"Đề: Tìm m để phương trình (2m+3)x-5=(m+2)-x có nghiệm là x=3.

Giải: Thế x=3 vào phương trình đã cho, ta suy ra (2m+3).3-5=(m+2)-3 \(\Rightarrow\) m=-1. -Hết-".

Bình luận (0)
H24
Xem chi tiết
MC
Xem chi tiết
GD

loading...

Bình luận (0)
HT
Xem chi tiết
H24
4 tháng 5 2023 lúc 15:50

\(m=0\) là okee rồi nè

còn \(x_1=x_2\) thì như sau :

\(\Leftrightarrow x_1-x_2=0\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=0^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)

Tới đây rồi áp dụng cái Vi-ét vào là được m còn lại nhe.

Bình luận (1)