Cho x,y,z >0 và x+y+z=1. Chứng minh rằng \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge\frac{49}{16}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Với x,y,z,t >0 chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{16}{x+y+z+t}+1\)
Áp dụng bđt cauchy schwarz dạng engel , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}+\frac{1^2}{t}\ge\frac{16}{x+y+z+t}\)
\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{16}{x+y+z+t}+1\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=t\)
Vậy ta có điều phải chứng minh
cách khác :3
Áp dụng bđt phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(< =>\frac{a+b}{ab}.\left(a+b\right).ab\ge\frac{4}{a+b}.\left(a+b\right).ab\)
\(< =>\left(a+b\right)^2\ge4ab\)
\(< =>a^2+2ab+b^2\ge4ab\)
\(< =>\left(a-b\right)^2\ge\)(luôn đúng)
Nên ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{4}{x+y}+\frac{4}{z+t}+1\ge\frac{16}{x+y+z+t}+1\)
dcv_new: Cách đó có khác gì Cauchy Schwarz đâu :V
Có thể làm như thế này nếu không muốn dùng Schwarz:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\ge\frac{4}{\sqrt[4]{xyzt}}\ge\frac{4}{\sqrt[4]{\left(\frac{x+y+z+t}{4}\right)^4}}=\frac{16}{x+y+z+t}\)
Đẳng thức xảy ra tại x=y=z=t
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)
\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)
\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)
\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)
t chỉ làm dc đến đây thôi :))
Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:
\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)
Tương tự : \(y^2z+y^2z+z^2x\ge3yz\); \(z^2x+z^2x+x^2y\ge3zx\)
Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)
\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Dấu '=' xảy ra khi x = y = z = 1
Do xyz=1. nên bđt cần chứng minh tường đương với
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)
Theo BĐT Bunhiacopsky ta có:
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)
Do vậy ta cần cm
\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)
BĐT trên là tổng của 3 BĐT sau:
\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)
\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)
\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)
ta có bđt trên tương đương với
\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)
Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm
dấu "=" xảy ra khi x=y=z=1
Cho x, y, z > 0 thoả mãn: \(xy+yz+zx=3xyz\). Chứng minh rằng: \(\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)
\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)
Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Cauchy-Schwarz:
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)
\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)
\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)
Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)
Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)
Do đó \(\text{VT}\geq \text{VP}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
cho x,y,z >0 và x+y+z=1
chứng minh: \(\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(1+x\right)}+\frac{z}{x\left(1+y\right)}\ge\frac{9}{4}\)
Ghi chú: Này, mình mới lớp 6, nên giải chưa biết chắc là đúng hay sai nên lỡ có sai thì bạn đừng trách mình nhé!
Đặt \(A=\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(x+1\right)}+\frac{z}{x\left(y+1\right)}\le\frac{9}{4}\)(Sửa đề)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b dương và x + y + z = 1,ta có:
\(\frac{4}{y\left(z+1\right)}=\frac{4}{y\left(z+x+y+z\right)}=\frac{4}{y\left(\left(z+x\right)+\left(z+y\right)\right)}\le\frac{4}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\)
Nhân hai vế với số dương xy, ta được:
\(\frac{4xy}{y\left(z+1\right)}\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\). Do đó:
\(4A=\frac{4xy}{y\left(z+1\right)}+\frac{4yz}{z\left(x+1\right)}+\frac{4zx}{x\left(y+1\right)}\)
\(\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+\frac{4yz}{z}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{4zx}{x}\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)
\(=4x\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+4y\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+4z\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)
\(=\frac{4x}{z+x}+\frac{4x}{z+y}+\frac{4y}{x+y}+\frac{4y}{x+z}+\frac{4z}{y+z}+\frac{4z}{y+z}\)
\(\Rightarrow4A\le\frac{4x+4y}{z+x}+\frac{4y+4z}{z+y}+\frac{4z+4x}{x+y}=x+y+z=9\)
Do : \(4A\le9\)nên \(A< \frac{9}{4}\)
Cho các số dương x, y, z thỏa mãn: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\)
Chứng minh rằng: \(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(2y+z+x\right)^2}+\frac{1}{\left(2z+x+y\right)^2}\ge\frac{3}{16}\)
Bài 1 cho x,y,z>2014 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1007}\)
chứng minh rằng \(\sqrt{x+y+z}\ge\sqrt{x-2014}+\sqrt{y-2014}+\sqrt{z-2014}\)
Bài 2
cho a,b,c>0. chứng minh rằng
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{4}{ab+bc+ca}\)
Bài 2 : đã cm bên kia
Bài 1: :|
we had điều này:
\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)
\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)
Xòng! bunyakovsky
P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<
Cho \(z\ge y\ge x>0\)
Chứng minh \(y.\left(\frac{1}{x}+\frac{1}{z}\right)+\frac{1}{y}.\left(x+z\right)\le\left(x+z\right).\left(\frac{1}{x}+\frac{1}{z}\right)\)
BĐT cần chứng minh tương đương với : \(\frac{\left(x+z\right)^2}{xz}\ge\frac{y\left(x+z\right)}{xz}+\frac{x+z}{y}\)
\(\Leftrightarrow\frac{x+z}{xz}\ge\frac{y}{xz}+\frac{1}{y}\Leftrightarrow y\left(x+z\right)\ge y^2+xz\)
\(\Leftrightarrow y^2-y\left(x+z\right)+xz\le0\Leftrightarrow\left(y-x\right)\left(y-z\right)\le0\) ( luôn đúng vì \(z\ge y\ge x>0\))
Vậy BĐT đã được chứng minh khi x = y = z
Chứng minh rằng
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)
Lời giải:
BĐT cần chứng minh tương đương với:
\((x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\right)\geq (x+y+z)\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
\(\Leftrightarrow 12+\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\geq 12+\frac{4x}{y+z}+\frac{4y}{x+z}+\frac{4z}{x+y}\)
\(\Leftrightarrow (\frac{y}{x}+\frac{y}{z}-\frac{4y}{x+z})+(\frac{z}{x}+\frac{z}{y}-\frac{4z}{x+y})+(\frac{x}{y}+\frac{x}{z}-\frac{4x}{y+z})\geq 0\)
\(\Leftrightarrow \frac{y(x-z)^2}{xz(x+z)}+\frac{z(x-y)^2}{xy(x+y)}+\frac{x(y-z)^2}{yz(y+z)}\geq 0\)
(luôn đúng với mọi $x,y,z>0$)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Cho x,y,z >0 và x+y+z=3.Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)
Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\) ≤\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))
⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)
⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)≥\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)
⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm