Những câu hỏi liên quan
LP
Xem chi tiết
PD
Xem chi tiết
H24
3 tháng 3 2021 lúc 9:13

Áp dụng định lý Py-ta-go vào ΔABHta có :

AB^2=AH^2+BH^2

=AH^2+18^2

=AH^2+324

AH^2=AB^2−324

Áp dụng định lý Py-ta-go vào ΔAHC ta có

AC^2=HC^2+AH^2

=322+(AB^2−324)

=1024−324+AB^2

=700+AB^2

AC=√700+AB2

Bình luận (0)
 Khách vãng lai đã xóa
HQ
16 tháng 2 2022 lúc 15:25

cây lụi

Bình luận (0)
 Khách vãng lai đã xóa
LA
21 tháng 2 2022 lúc 8:58

Áp dụng định lý Py-ta-go vào ΔABHta có :

AB ^ 2 = AH ^ 2 + BH ^ 2

=AH^2+18^2

=AH^2+324

⇒ AH ^ 2 = AB ^ 2−324

Áp dụng định lý Py-ta-go vào ΔAHC ta có

AC^2=HC^2+AH^2

= 322 + (AB ^ 2−324)

= 1024−324 + AB ^ 2

= 700 + AB ^ 2

⇒ AC = √700 + AB2.

HT

mk okie với lời giải của thắng mk làm giống bạn ý

Bình luận (0)
NN
Xem chi tiết
NS
26 tháng 4 2020 lúc 13:51

Nguyễn Thảo Nguyên             

em chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/99235669166.html

Bình luận (0)
 Khách vãng lai đã xóa
FT
26 tháng 4 2020 lúc 14:07

Thế lên google mak gõ cho nhanh nha bn!

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
DH
Xem chi tiết
NT
31 tháng 7 2023 lúc 11:03

\(AH^2=BH.CH=18.32=576\Rightarrow AH=24\left(cm\right)\)

\(AB^2=AH^2+BH^2=576+324=900\) (Δ ABH vuông tại H)

\(\Rightarrow AB=30\left(cm\right)\)

\(AC^2=AH^2+CH^2=576+1024=1600\) (Δ ACH vuông tại H)

\(\Rightarrow AC=40\left(cm\right)\)

Bình luận (0)

Xét tam giác AHB vuông tại H có:

AH2+HB2=AB2(định lý pythagore) (1)

Xét tam giác AHC vuông tại H có:

HA2+HC2=AC2 (định lý pythagore) (2) 

Từ (1) và (2) ta cộng lại vế theo vế, có:

2AH2+BH2+CH2=AB2+AC2

<=>2AH2+BH2+CH2=BC2

<=> 2AH2+182+322=(18+32)2

<=>2AH2+1348=2500

<=>2AH2=2500-1348

<=>2AH2=1152

<=>AH2=1152:2

<=>AH2=576

<=>AH=\(\sqrt{576}\)

<=>AH=24(cm)

-Ta thay AH=24cm vào (1) ta có:

HB2+AH2=AB2

<=>182+242=AB2

<=>900=AB2

<=>\(AB=\sqrt{900}=30\)(cm)

-Ta thay AH=24cm vào (2) ta có:

HC2+HA2=AC2

<=>322+242=AC2

<=>1600=AC2

\(\Leftrightarrow AC=\sqrt{1600}=40\left(cm\right)\)

Vậy AB=30cm; AC=40cm

Bình luận (0)
PD
Xem chi tiết
NM
5 tháng 11 2021 lúc 15:56

a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)

Bình luận (1)
TA
Xem chi tiết
TO
16 tháng 4 2020 lúc 11:28

A B C H

(thêm kí hiệu góc vuông ở đỉnh A nx nha bạn, mình quên)

Cm:

Áp dụng định lí Py-ta-go:

Xét \(\Delta\)AHB có:

AH2 + BH2 = AB2     (1)

Xét \(\Delta\)AHC có:

AH2 + CH2 = AC2     (2)

Cộng (1) và (2) vế theo vế, ta được:

2AH2 + BH2 + CH2 = AB2 + AC2

<=> 2AH2 + BH2 + CH2 = BC2

<=> 2AH2 + 182 + 322 = (18+32)2

<=> 2AH2 + 1348 = 2500

<=> 2AH2 = 1152

<=> AH2 = 576

<=> AH = \(\sqrt{576}\)= 24 (cm)

Thay AH = 24 và BH = 18 vào (1) ta được:

242 + 182 = AB2

<=> 900 = AB2

<=> AB = \(\sqrt{900}\)= 30 (cm)

Thay AH = 24 và CH = 32 vào (2) ta được:

242 + 322 = AC2

<=> 1600 = AC2

<=> AC = \(\sqrt{1600}\)= 40 (cm)

Vậy AB = 30 cm ; AC = 40 cm

Bình luận (0)
 Khách vãng lai đã xóa
TA
16 tháng 4 2020 lúc 15:37

thank ciu bạn nha <3

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LH
4 tháng 8 2016 lúc 8:29
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
Bình luận (0)
LH
4 tháng 8 2016 lúc 8:31

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

Bình luận (0)
NB
12 tháng 12 2016 lúc 15:30

Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2

Bình luận (0)
MC
Xem chi tiết
IS
25 tháng 2 2020 lúc 21:33

a) áp dụng đ/l pitago zô tam giác zuông abh ta đc

=> AB^2=AH^2+HB^2

=> AH^2=Ab^2-HB^2

=> AH=24

áp dụng dl pitago zô tam giác zuông ahc

=> AC^2=AH^2+HC^2

=> AC=40

b) Tco : CH+HB=32+18=50

Tam giac ABC có

\(\hept{\begin{cases}AB^2+AC^2=40^2+30^2=2500\\BC^2=50^2=2500\end{cases}}\)

=> \(AB^2+AC^2=BC^2\)

=> tam giác abc zuông

Bình luận (0)
 Khách vãng lai đã xóa