Rút gọn:
a) \(\frac{7200-10}{4320-6}\)
b) \(\frac{984+8}{1230+10}\)
Bài 1:
a) Phân tích các số sau ra thừa số nguyên tố
a = 1290 ; b = 7200 ; c = 4680
b) Rút gọn \(\dfrac{8440}{5910}\) ; \(\dfrac{1245}{3450}\)
B2: a) Viết tập hợp các ước nguyên tố của: 140 ; 138
b) Rút gọn A = \(\dfrac{2^{10}+4^6}{8^4}\) ; B = \(\dfrac{6^{10}+15.2^{10}.3^9}{12.8^3.27^3}\)
Bài 1:
a) \(a=2\cdot3\cdot5\cdot43\)
\(b=7200=2^5\cdot3^2\cdot5^2\)
\(c-4680=2^3\cdot3^2\cdot5\cdot13\)
b) \(\dfrac{8440}{5910}=\dfrac{8440:10}{5910:10}=\dfrac{844}{591}\)
\(\dfrac{1245}{3450}=\dfrac{1245:15}{3450:15}=\dfrac{83}{230}\)
Bài 2:
a) Ước nguyên tố của 140 là:
\(ƯNT\left(140\right)=\left\{2;5;7\right\}\)
Ước nguyên tố của 138 là:
\(ƯNT\left(138\right)=\left\{3;23;2\right\}\)
b) \(A=\dfrac{2^{10}+4^6}{8^4}\)
\(A=\dfrac{2^{10}+2^{12}}{2^{12}}\)
\(A=\dfrac{2^{10}\cdot\left(1+2^2\right)}{2^{12}}\)
\(A=\dfrac{1+4}{2^2}\)
\(A=\dfrac{5}{4}\)
\(B=\dfrac{6^{10}+15\cdot2^{10}\cdot3^9}{12\cdot8^3\cdot27^3}\)
\(B=\dfrac{2^{10}\cdot3^{10}+5\cdot2^{10}\cdot3^{10}}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{2^{10}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{1+5}{2}\)
\(B=3\)
Rút gọn:
a)\(\frac{3^6.2^{21}}{175^9.7^3}\)
b)\(\frac{3^{10}.6^7.4}{10^9.5^8}\)
a: \(=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^9\cdot7^3}=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^{12}}\)
b: \(=\dfrac{3^{10}\cdot3^7\cdot2^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\dfrac{3^{17}}{5^{17}}\)
Rút gọn phân số :
A = \(\frac{10^6+7}{10^6}\) ; B = \(\frac{10^8-2}{10^8+5}\)
\(A=\frac{10^6+7}{10^6}\)\(=\frac{10^6}{10^6}+\frac{7}{10^6}=1+\frac{7}{10^6}\)
Rút gọn
\(A=4\sqrt{32}+2\sqrt{50}-8\sqrt{2}-2\sqrt{98}\)
\(B=\frac{1}{\sqrt{6}+\sqrt{10}}-\frac{1}{\sqrt{6}-\sqrt{10}}\)
\(A=4\sqrt{32}+2\sqrt{50}-8\sqrt{2}-2\sqrt{98}\)
\(=4\sqrt{16.2}+2\sqrt{25.2}-8\sqrt{2}-2\sqrt{49.2}\)
\(=16\sqrt{2}+10\sqrt{2}-8\sqrt{2}-14\sqrt{2}=4\sqrt{2}\)
\(B=\frac{1}{\sqrt{6}+\sqrt{10}}-\frac{1}{\sqrt{6}-\sqrt{10}}\)
\(=\frac{\sqrt{10}-\sqrt{6}}{\left(\sqrt{6}+\sqrt{10}\right)\left(\sqrt{10}-\sqrt{6}\right)}+\frac{\sqrt{6}+\sqrt{10}}{\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{6}+\sqrt{10}\right)}\)
\(=\frac{\sqrt{10}-\sqrt{6}}{4}+\frac{\sqrt{10}+\sqrt{6}}{4}\)
\(=\frac{2\sqrt{10}}{4}=\frac{\sqrt{10}}{2}=\sqrt{2,5}\)
Rút gọn phân số :
A = \(\frac{10^6+7}{10^6}\) ; B = \(\frac{10^8-2}{10^8+5}\)
\(A=\frac{10^6+7}{10^6}=1+\frac{7}{10^6}\)
\(B=\frac{10^8-2}{10^8+5}=\frac{10^8+5-7}{10^8+5}=1-\frac{7}{10^8}\)
RÚT GỌN B=\(\left(\frac{a^2}{a^3-4a}-\frac{10}{5a+10}-\frac{7}{14-7a}\right):\left(a+2-\frac{a^2-6}{a-2}\right)\)
Rút gọn :
\(A=\frac{4^6.9^5+69.120}{8^4.3^{12}+6^{11}}\)
\(B=\frac{10^4+5.10^3+5^4}{25}\)
\(C=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(A=\frac{4^6.9^5+69.120}{8^4.3^{12}+6^{11}}=\frac{2^{12}.3^{10}+2^3.3^2.115}{2^{12}.3^{12}+\left(2.3\right)^{11}}=\frac{3^2.2^3\left(115+2^9.3^8\right)}{6^{11}\left(6+1\right)}=\frac{115+2^9.3^8}{6^8.3.7}\)
\(B=\frac{10^4+5.10^3+5^4}{25}=\frac{\left(10^2\right)^2+2.5^2.10^2+\left(5^2\right)^2}{25}=\frac{\left(10^2+5^2\right)^2}{25}=\frac{125^2}{25}=\frac{25.625}{25}=625\)
\(C=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{10}.2^{10}+4^{10}}{4^4.4^7+4^4.2^4}=\frac{4^{10}\left(2^{10}+1\right)}{4^4.2^4\left(2^{10}+1\right)}=\frac{4^6}{2^4}=256\)
Rút gọn
a) \(\frac{2^{13}.3^7}{2^{15}.3^2.9}\)
b) \(\frac{4^{10}+8^4}{4^5+8^6}\)
a)\(=\frac{3^7}{2^2.3^4}=\frac{3^3}{2^2}=\frac{27}{4}\)
b)\(=\frac{2^{20}+2^{12}}{2^{10}+2^{18}}=\frac{2^{12}\left(2^8+1\right)}{2^{10}\left(1+2^8\right)}=\frac{2^{12}}{2^{10}}=2^2=4\)
Rút gọn A=\(\frac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-2}{6}=-\frac{1}{3}\)
Ta có:\
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(A=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(A=-\frac{2}{6}=-\frac{1}{3}\)
Ta có :
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.4.5}\)
\(A=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(A=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(A=\frac{1-3}{1+5}\)
\(A=\frac{-2}{6}\)
\(A=\frac{-1}{3}\)
Chúc bạn học tốt ~