Những câu hỏi liên quan
TA
Xem chi tiết
HP
6 tháng 1 2021 lúc 10:19

a, Phương trình có hai nghiệm phân biệt khi \(\Delta'=\left(m+1\right)^2-\left(4m^2-2m-2\right)=-3m^2+4m+3>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{13}}{3}< m< \dfrac{2+\sqrt{13}}{3}\)

b, Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'>0\\2\left(m+1\right)>0\\4m^2-2m-2>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
PD
Xem chi tiết
HH
4 tháng 8 2017 lúc 9:22

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

Bình luận (0)
NN
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 4 2017 lúc 10:57

Phương trình x 2 + (2m – 1)x + m 2 – 2m + 2 = 0

(a = 1; b = 2m – 1; c = m 2 – 2m + 2)

Ta có ∆ = ( 2 m – 1 ) 2 – 4 . ( m 2 – 2 m + 2 ) = 4 m – 7

Gọi x 1 ;   x 2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có

Vì a = 1  0 nên phương trình có hai nghiệm âm phân biệt  ⇔ Δ > 0 P > 0 S > 0

  ⇔ 4 m − 7 > 0 1 − 2 m > 0 m 2 − 2 m + 2 > 0 ⇔ m > 7 4 m < 1 2 m − 1 2 + 1 > 0      ( l u o n    d u n g ) ⇔ m > 7 4 m < 1 2     ( v o ​​     l y )

Vậy không có giá trị nào của m thỏa mãn đề bài

Đáp án: D

Bình luận (0)
PT
Xem chi tiết
LN
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 11 2018 lúc 6:04

Đáp án: B

(m - 1) x 2  - 2mx + 3m - 2 = 0 (*)

Để phương trình (*) có hai nghiệm dương phân biệt thì:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 2 2018 lúc 6:00

Phương trình đã cho có hai nghiệm dương x 1 ,   x 2  phân biệt khi và chỉ khi

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vì m 2   +   m   +   1   >   0 nên bất phương trình (1) ⇔ m < 3/2 và bất phương trình (2) ⇔ m > 5

    Do dó không có giá trị của m thỏa mãn yêu cầu bài toán

Bình luận (0)
LD
Xem chi tiết
PC
Xem chi tiết