tính giá trị biểu thức (1 -1/2).(1 - 1/3).(1 -1/4)...(1- 1/99)
Tính giá trị biểu thức: 1/1*2+1/2*3+1/3*4+•••••+1/99*100 = ?
Cách tìm BCNN:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.Tính giá trị biểu thức: A= ( 1/2+1).(1/3+1).(1/4+1).....(1/99+1)
Tính giá trị biểu thức sau: A=(1/2+1)*(1/3+1)*(1/4+1).....(1/99+1)
A = 3/2x4/3x5/4x....x100/99=100/2=50
A=(1/2+1)*(1/3+1)*(1/4+1).....(1/99+1)
A=3/2*4/3*5/4.....100/99 (Thực hiện tính tổng trong mỗi ngoặc đơn)
A=(3*4*5...100)/(2*3*4...99)
A=100/2 (Rút gọn những thừa số giống nhau ở tử và mẫu)
A=50
Tính giá trị biểu thức sau A=(1/2+1)*(1/3+1)*(1/4+1)*...*(1/99+1)
Tính giá trị biểu thức sau
A=(1/2+1).(1/3+1)+(1/4+1)......(1/99+1)
Sửa:\(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right).....\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{100}{2}=50\)
cách viết phân số trên máy tính kiểu gì vậy nhỉ
A = ( 1/2 + 1 )( 1/3 + 1)...(1/99 + 1)
= ( 1/2 + 2/2)(1/3 + 3/3)... (1/99 + 99/99)
= 3/2 . 4/3 ... 100/99
= 3 . 4 ... 100 / 2 . 3 . 99
= 100/2 = 50
#Louis
Tính giá trị biểu thức sau:
A=(1/2+1).(1/3+1).(1/4+1)........(1/99+1)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)........\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}.\frac{4}{3}.............\frac{100}{99}=\frac{3.4....................100}{2.3.................99}=\frac{\left(3.4.......99\right).100}{2.\left(3.4...........99\right)}=\frac{100}{2}=50\)
Vậy A=50
A=\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right)..............\left(\frac{1}{99}+1\right)\)
=\(\frac{3}{2}.\frac{4}{3}.............\frac{100}{99}\)
=\(\frac{100}{2}\)=50
Tính giá trị của biểu thức A=\(1\dfrac{1}{2}\)x\(1\dfrac{1}{3}\)x\(1\dfrac{1}{4}\)x...x\(1\dfrac{1}{99}\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
Tính Giá Trị của biểu thức sau biết ;
S = 1 /1 . 2 . 3 . 4 + 1 / 2 . 3 . 4 . 5 +......................+ 1 / 98 . 99 . 100 . 101
Tính giá trị của biểu thức sau:
1/1 * 2 + 1/2 * 3 + .................... + 1/98 * 99 + 1/99 * 100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
ĐẶT : A= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)\(\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
= \(1-\frac{1}{99}=\frac{98}{99}\)
Gọi tổng đó là S
TA có : S = \(\frac{1}{1.2}+\frac{1}{2.3}+......\frac{1}{98.99}+\frac{1}{99.100}\)
S = \(\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
Vậy S = \(\frac{4949}{9900}\)