Những câu hỏi liên quan
an
Xem chi tiết
NP
24 tháng 1 2017 lúc 21:31

lấy mt mà bấm

Bình luận (0)
RN
Xem chi tiết
AN
21 tháng 9 2016 lúc 9:34

Ta có x2 - 2xy + 2y2 -2x + 6y+5 =0

<=> (x2 - 2xy + y2) - (2x - 2y) + (y2 + 4y + 4) + 1 = 0

<=> [(x - y)2 - 2(x - y) + 1] + (y + 2)2 = 0

<=> (x - y - 1)2 + (y + 2)2 = 0

<=> \(\hept{\begin{cases}x-y-1=0\\2\:+y=0\end{cases}}\)

<=> (x; y) = (-1; -2)

Bình luận (0)
H24
Xem chi tiết
NL
9 tháng 11 2021 lúc 17:30

\(\Leftrightarrow\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-4y+4\right)=4\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=4=2^2+0^2=0^2+2^2\)

\(\Rightarrow x;y\)

Bình luận (0)
KN
Xem chi tiết
TL
1 tháng 3 2020 lúc 13:48

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
T2
Xem chi tiết
KT
2 tháng 1 2018 lúc 20:12

           \(x^2-2xy+2y^2-2x+6y+5=0\)

\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y^2+2y+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y+1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\)\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-y-1=0\\y+2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)

Bình luận (0)
BX
2 tháng 1 2018 lúc 20:07

\(\frac{ }{ }\)

  
  
  
Bình luận (0)
H24

\(x^2-2xy+2y^2-2x+6y+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+y^2+4y+4=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)

Bình luận (0)
HA
Xem chi tiết
HA
Xem chi tiết
NU
19 tháng 9 2019 lúc 12:43

\(a,4x^2+9y^2+4x-24y+17=0\)

\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)

\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)

Bình luận (1)
HN
Xem chi tiết
LD
6 tháng 9 2020 lúc 19:05

x2 + 2y2 + 2xy - 4x + 6y + 29 = 0

<=> ( x2 + 2xy + y2 - 4x - 4y + 4 ) + ( y2 + 10y + 25 ) = 0

<=> [ ( x2 + 2xy + y2 ) - 2( x + y ).2 + 22 ] + ( y + 5 )2 = 0

<=> ( x + y - 2 )2 + ( y + 5 )2 = 0 (*)

<=> \(\hept{\begin{cases}\left(x+y-2\right)^2\ge0\forall x,y\\\left(y+5\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y-2\right)^2+\left(y+5\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-5\end{cases}}\)

Vậy x = 7 ; y = -5

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết