Cho tam giác MNP có góc N = 35 độ, góc P = 30 độ. Kẻ MI vuông góc với NP. Tính MI,MP
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giác MNP cân tại M Vẽ mi vuông góc với NP tại I
Chứng minh MI là đường trung trực của N P
vẽ IE vuông góc với MN tại A, IB vuông góc với MP tại B chứng minh tam giác IAB cân
Giả sử góc MNP = 45° MN = 2 cm Tính NP
Giả sử góc MNP = 30 độ Chứng minh tam giác AIB đều
cho tam giác MNP cân tại M coa MN=MP=13cm, NP=10cm. kẻ MI vuông góc với NP (IϵNP)
A, chứng minh rằng: IN=IP
B,tính độ dài MI
C, kẻ IH vuông góc với MN (HϵMN), IK vuông góc với MP (KϵMP).chứng minh IH=IK
Xét tam giác MNI và MPI có
MI là cạnh chung
MN = MP( tam giác MNP cân)
Góc MIN = góc MIP = 90°
=> Tam giác MIN = tam giác MIP( cgv - ch)
IN = IP = 5 cm nên I là trung điểm của NP
b) Tam giác MIN vuông tại I có
NI2 + MI2 = MN2( định lí Pytago)
MI2 + 52 = 142
MI2 + 25 = 196
MI2 = 144
MI=12
c) Xét tam giác PHI và PKI có
MI là cạnh chung
Góc HMI = KMI ( tam giác NMI = PMI )
Góc IHM = IKM = 90°
=》 Tam giác HMI = KMI ( ch - gn)
=》IH=IK
cho tam giác MNP có MN=MP, MI là đường trung tuyến.
a) tam giác MNP là tam giác gì?
b)chứng minh: tam giác MNI= tam giác MPI
c) chứng minh MI là dường trung trực của đoạn thẳng NP
d) cho MN=MP= 10cm, NP= 12cm. tính độ dài MI
e)kẻ IH vuông góc với MN, H thuộc MN. trên MH lấy điểm E, trên MH lấy điểm E, trên MP lấy điểm Fsao cho góc MEF bằng hai lần góc EIH. chứng minh rằng: EI là tia phân giác của góc HEF
a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)
b) xét tam giác MNI và MPI có
MI chung
MN=MP(GT)
IN=IP(MI là trung tuyến nên I là trung điểm NP)
SUY ra tam giác MNI=MPI(C-C-C)
c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)
d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I
Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP
Mà NP=12cm(gt) suy ra NI=12x1/2=6cm
xét tam giác vuông MNI có
NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)
Suy ra MI2=NM2-NI2
mà NM=10CM(gt) NI=6CM(cmt)
suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8
mà MI>0 Suy ra MI=8CM (đpcm)
ế) mik gửi cho bn bằng này nhé
a) Vì MN=MP => tam giác MNP là tam giác cân tại M.
b)Xét tam giác MIN và tam giác MIP có:
MN=MP (vì tam giác MNP cân)
\(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)
NI=PI(vì MI là trung tuyến)
=> tam giác MIN=tam giác MIP(c.g.c)
c) Ta có: MN=MP
IN=IP
=> M,I thuộc trung trực của NP
Hay MI là đường trung trực của NP
d) IN=IP=NP/2=12/2=6(cm)
Xét tam giác MIN có góc MIN =90*
=> MN^2=MI^2 + NI^2
=> MI^2=MN^2-NI^2
=> MN^2 = 10^2 - 6^2
=> MN = 8
e) Tam giác HEI có goc IHE=90*
=> góc HEI + góc HIE= 90*
Mà góc HIE = góc MEF/2
=> góc MEF/2 + góc HEI = 90* (1)
Mà góc MEF + góc HEI + góc IEF = 180*
=> góc MEF/2 + góc IEF = 90* (2)
Từ (1) và (2) => góc HEI = góc IEF
Hay EI là tia phân giác của góc HEF
cảm ơn hoàng hàn nhật băng nhiều, mk mới tham gia nên ko biết mỗi câu hỏi chỉ dc k đúng 1 lần xin lỗi bạn nha
Cho tam giác MNP vuông tại M có đường cao MI chia cạnh huyền NP thành hai đoạn NI = 5cm và IP = 7cm
a Tính độ dài các đoạn MI, MN, NP
b Gọi K là trung tâm của MP. Tính số đo góc MKN (làm tròn đến độ )
c Kẻ MH vuông góc với NK (H thuộc NK). CM : NH.NK = NI.NP
(Vẽ giúp mình cái hình cảm ơn)
A áp dụng hệ thức lượng trong tam giác....
+ MI=NI*IP
MI=5*7
MI=35
BC=NI+IP
BC=5+7=12
+ MN=NP*NI
MN= 12*5=60
Cho tam giác MNP vuông tại N biết MN=6 , MP =10 . Kẻ MI là phân giác góc M ( I thuộc NP ) từ I kẻ IH vuông góc với MP ( H thuộc MP )
a) tính IN /IP
b) chứng minh MN.HI = MH.NP
c) tính diện tích tam giác MNI
a: IN/IP=MN/MP=3/5
c: NP=căn 10^2-6^2=8cm
NI là phân giác
=>NI/MN=IP/MP
=>NI/3=NP/5=8/8=1
=>NI=3cm
S MNI=1/2*3*6=9cm2
Cho tam giác MNP có MN = MP, I là trung điểm của cạnh NP. Chứng minh rằng: a) Góc N = Góc P b) MI là phân giác của góc NMP. c) MI vuông góc với NP.
a) Xét tam giác MNP có: MN = MP (gt).
=> Tam giác MNP cân tại M.
=> Góc N = Góc P (Tính chất tam giác cân).
b) Xét tam giác MNP cân tại M:
MI là trung tuyến (I là trung điểm của cạnh NP).
=> MI là phân giác của góc NMP (Tính chất các đường trong tam giác).
c) Xét tam giác MNP cân tại M:
MI là trung tuyến (I là trung điểm của cạnh NP).
=> MI là đường cao (Tính chất các đường trong tam giác).
=> MI vuông góc với NP (đpcm).
Cho tam giác MNP cân tại M . MI là đường trung tuyến của tam giác MNP. kẻ NK vuông góc MP và cắt MI tại O.
chứng minh MI vuông góc np.
C/m PO vuông góc MN tại J.
C/m PK=NJ.
C/m Jk song song NP.
Kẻ phân giác góc MNO cắt MO tại H tính số đo góc MKH
Cho tam giác MNP có MN = MP, I là trung điểm của cạnh NP. Chứng minh rằng: a) Góc N = Góc P b) MI là phân giác của góc NMP. c) MI vuông góc với NP. cảm ơn trước nha!!!! (nếu chơi freefive cho xin id game)
a: Xét ΔMNP có MN=MP
nên ΔMNP cân tại M
hay \(\widehat{N}=\widehat{P}\)