Cho hình thang ABCD có 2 đáy là AB = 2a; CD = a. Hãy xác định vị trí điểm M trên đường thẳng CD sao cho Đường thẳng AM chia hình thang thành 2 phần có diện tích bằng nhau.
Cho hình chóp S.ACBD có đáy ABCD là hình thang đáy AB và CD với A B = 2 C D = 2 a , cạnh bên SA vuông góc với mặt phẳng đáy và S A = a 3 . Tính chiều cao h của hình thang ABCD biết khối chóp S.ABCD có thể tích bằng
A. h = 2a
B. h = 4a
C. h = 6a
D. h = a
Tính biết SA ⊥ đáy, ABCD là hình thang vuông có 2 đáy AD=a, BC=2a và AB=a, SA=2a
\(V=\dfrac{1}{3}SA.S_{ABCD}=\dfrac{1}{3}SA.\dfrac{1}{2}\left(AD+BC\right).AB=a^3\)
Tính thể tích S.ABCD biết SA ⊥ đáy, ABCD là hình thang vuông có 2 đáy AD=a, BC=2a và AB=a, SA=2a
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AD = 2a, AB = BC = a, SA ⊥ (ABCD), SA = a 2 . Tính thể tích V của hình chóp S.ABD.
A. V = a 3 2 3
B. V = a 3 3 6
C. V = a 3 3
D. V = a 3 6
cho hình thang vuông ABCD có AD=a là đường cao, đáy nhỏ AB=a, đáy lớn CD=2a. Thể tích của khối tròn xoay khi hình thang quay quanh CD là
Khi quay quanh CD sẽ tạo ra hình khối gồm 2 khối:
- Khối trụ chiều cao \(AB=a\) bán kính đáy \(r=AD=a\Rightarrow V_1=\pi.AB^2.AD^2=\pi a^3\)
- Khối nón chiều cao \(CH=\dfrac{1}{2}CD=a\) bán kính đáy \(BH=AD=a\Rightarrow V_2=\dfrac{1}{3}\pi.a^2.a=\dfrac{\pi a^3}{3}\)
\(\Rightarrow V=V_1+V_2=\pi a^3+\dfrac{\pi a^3}{3}=\dfrac{4\pi a^3}{3}\)
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, SA = 2a và SA vuông góc với mặt đáy (ABCD). Biết AD = 2a, AB = BC = CD = a. Diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD bằng bao nhiêu?
Đáp án A
ABCD là hình thanh cân có AB = BC = CD = a; AD = 2a nên M là tâm của đáy ABCD.
SA = AD = 2a; SA ⊥ (ABCD) => tam giác SAD vuông cân tại A nên tâm mặt cầu ngoại tiếp hình chóp S.ABCD là trung điểm N của SD
Cho hình chóp SABCD có đáy là hình thang cân, AD là đáy lớn, SB=a căn 2, AD=2a, AB=BC=CD=a, hình chiếu của S -> (ABCD) là trung điểm AB. Khoảng cách từ SB ->AD
Cho hình chóp SABCD có SA vuông góc với (ABCD), SA=a\(\sqrt{2}\), đáy abcd là hình thang vuông tại A và D với AB=2a, AD=DC=a. Tính góc giữa (SBC) và (ABCD)
Cho hình thang ABCD có 2 đáy là AB = 2a; CD = a. Hãy xác định vị trí điểm M trên đường thẳng CD sao cho Đường thẳng AM chia hình thang thành 2 phần có diện tích bằng nhau.