Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LT
Xem chi tiết
LD
Xem chi tiết
H9
10 tháng 8 2023 lúc 9:21

a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)

Nên: \(10^{10}-1⋮9\)

b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)

Mà: \(1+0+...+2=3\)

Nên: \(10^{10}+2⋮3\)

c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)

Mà tổng của 2 số chẵn đó là:

\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên 

Tổng của 2 số chẵn liên tiêp ko chia hết cho 4

Bình luận (0)
H9
10 tháng 8 2023 lúc 9:28

d) Gọi hai số tự nhiên đó là: \(a,a+1\)

Tích của 2 số tự nhiên đó là:

\(a\left(a+1\right)=a^2+a\) 

Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn

Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn 

Vậy tích của hai số liên tiếp là chẵn

e) Gọi hai số đó là: \(2a,2a+2\)

Tích của hai số đó là:

\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\) 

4a(a+1) chia hết cho 8 nên

Tích của hai số tự nhiên liên tiếp chia hết cho 8

Bình luận (0)
H24
10 tháng 8 2023 lúc 9:30

d) Gọi một số tự nhiên bất kỳ là a 

\(\Rightarrow\) Số tự nhiên liền kề là a+1

Nếu a là số lẻ thì a+1 là số chẵn

\(\Rightarrow a\left(a+1\right)\) là số chẵn

Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn 

Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn

e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )

Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)

Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn

\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )

\(\Rightarrow2a\left(2a+2\right)=8k⋮8\) 

Vậy tích hai số chẵn liên tiếp chia hết cho 8

Bình luận (0)
YT
Xem chi tiết
NT
11 tháng 11 2023 lúc 20:52

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

Bình luận (0)
NL
Xem chi tiết
DT
12 tháng 7 2015 lúc 17:03

sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:

Lấy a/b=c/d=k(k thuộc N*) 
=>a=bk ; c=dk 
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1) 
       + 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2) 
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)

Vậy 2a-3c/2b-3d=2a+3c/2b+3d

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 8 2023 lúc 8:09

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

\(\Rightarrow\dfrac{2a+3c}{2a-3c}=\dfrac{2b+3d}{2b-3d}\)

\(\Rightarrow dpcm\)

Bình luận (0)
TM
Xem chi tiết
NL
Xem chi tiết
XO
27 tháng 12 2020 lúc 16:27

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó (2a + 3c)(2b - 3d) 

= (2bk + 3dk)(2b - 3d)

= k(2b + 3d)(2b - 3d) (1)

(2a - 3c)(2b + 3d)

= (2bk - 2dk)(2b + 3d)

= k(2b - 3d)(2b + 3d) (2)

Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)

b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d) 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)

Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)

Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 12 2020 lúc 16:29

1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)

        Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)

Câu 2 cũng tương tự nên tự làm đi

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
ZZ
4 tháng 4 2020 lúc 22:37

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó:

\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)

\(\frac{2a+3c}{2a+3d}=\frac{2bk+3dk}{2a+3d}=\frac{k\left(2a+3d\right)}{2a+3d}=k\)

Vậy \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}=k\)

Ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
8 tháng 8 2023 lúc 21:33

\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}=\dfrac{2a+3c+2a-3c}{2b+3d+2b-3d}=\dfrac{a}{b}\)

\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}=\dfrac{2a+3c-\left(2a-3c\right)}{2b+3d-\left(2b-3d\right)}=\dfrac{c}{d}\)

Suy ra \(\dfrac{a}{b}=\dfrac{c}{d}\)

Bình luận (0)