cmr 2/3+2/15+2/35+2/63+...+2/(2n-1)(2n+1) <1
Cau 1: Tim n biet : 5/8 + 5/24 + 5/48 + 5/80 + ... + 5/2n + 2 . 2n + 4 = 189/112
Cau 2 : Cho A = 1 + 1/1.2 + 1/1.2.3 + ... + 1/1.2.3...2014. So sanh A voi 2
Cau 3 : Tim n biet : 5/3 + 5/15 + 5/35 + 5/63 +...+ 5/2n + 1 . 2n + 3 = 172/69
2/3+2/15+2/35+...+2/(2n-1)(2n+1)
Tìm n- Biết:
2/3+2/15+2/35+...+2/(2n-1).(2n+1)=50/51
jup mik vs thank
mik ko biết viết phân số các bạn thông cảm
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(1-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(\frac{1}{2n+1}=1-\frac{50}{51}=\frac{1}{51}\)
=> 2n + 1 = 51
=> 2n = 50
=> n = 25
Vậy n = 25
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
1. PTĐT thành nhân tử
a) \(x^4+2x^3-16x^2-2x+15\)
b) \(2x^4-x^3-9x^2+13x-5\)
c) \(x^4+6x^3+11x^2+5x+1\)
2. CMR; ∀n ∈ Z thì:
a) \(n^4+2n^3-n^2-2n\) ⋮ 24
b) \(n^4-4n^3-4n^2+16n\) ⋮ 384
1.
\(a,=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\\ =\left(x-3\right)\left(x^3+5x^2-x-5\right)\\ =\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\\ =\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\\ b,=2x^4-2x^3+x^3-x^2-8x^2+8x+5x-5\\ =\left(x-1\right)\left(2x^3+x^2-8x+5\right)\\ =\left(x-1\right)\left(2x^3+5x^2-4x^2-10x+2x+5\right)\\ =\left(x-1\right)\left(2x+5\right)\left(x^2-2x+1\right)\\ =\left(x-1\right)^3\left(2x+5\right)\)
2.
\(a,=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n^2-1\right)\left(n+2\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Suy ra đpcm
Bổ sung điều kiện câu b: n chẵn và n>4
\(b,=n\left(n^3-4n^2-4n+16\right)=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]\\ =\left(n-4\right)\left(n-2\right)n\left(n+2\right)\)
Với n chẵn và \(n>4\) thì đây là tích 4 số nguyên chẵn liên tiếp nên chia hết cho \(2\cdot4\cdot6\cdot8=384\)
1.\(PTĐT\) thành nhân tử
a) \(x^4+2x^3-16x^2-2x+15\)
b) \(2x^4-x^3-9x^2+13x-5\)
c) \(x^4+6x^3+11x^2+6x+1\)
2. CMR; ∀ n ∈ Z thì
a) \(n^4+2n^3-n^2-2n\) ⋮ 24
b) \(n^4-4n^3-4n^2+16n\) ⋮ 384
Bài 1:
c: \(=\left(x^2+3x+1\right)^2\)
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
a)Cho A= 1/2^2+1/3^2+...+1/n^2.CMR A<1
b)Cho B=1/2^2+1/4^2+1/6^2+...+1/(2n)^2.CMR B<1/2
c)Cho C=3/4+8/9+15/16+...+n^2-1/n^2.CMR C<n-2