Những câu hỏi liên quan
HM
Xem chi tiết
NT
13 tháng 12 2021 lúc 17:14

a: Xét ΔABE và ΔADC có 

\(\widehat{ABE}=\widehat{ADC}\)

\(\widehat{BAE}=\widehat{DAC}\)

Do đó: ΔABE\(\sim\)ΔADC

Suy ra: \(AB\cdot AC=AD\cdot AE\)

Bình luận (0)
HP
Xem chi tiết
VM
20 tháng 10 2019 lúc 23:27

A B C D E

dễ thấy Sabc =\(\frac{1}{2}\) AB.AC.sinA; Sade= \(\frac{1}{2}\)AD.AE.sinA

=>  Sabc/Sade=ad.ae/ab.ac

de//bc thì \(\frac{AD}{AB}=\frac{DE}{BC}=>\frac{BD}{AB}=\frac{BC-DE}{BC}=>BD=\frac{AB\left(BC-DE\right)}{BC}\)

SBDE = \(\frac{1}{2}BD.DEsin\widehat{BDE}=\frac{1}{2}\frac{AB\left(BC-DE\right)}{BC}.DE.cos\widehat{ABC}=\)\(\frac{AB.cos\widehat{ABC}}{2BC}\left(BC.DE-DE^2\right)\)

BC.DE - DE2 = \(\frac{BC^2}{4}-\)(\(\frac{BC}{2}-DE\))2 \(\le\frac{BC^2}{4}\)

vậy SBDE đạt GTLN khi DE= \(\frac{BC}{2}\)hay \(\frac{DE}{BC}=\frac{1}{2}=\frac{AD}{AB}\) hay D là trung điểm AB

Bình luận (0)
 Khách vãng lai đã xóa
DM
Xem chi tiết
DL
Xem chi tiết
PD
Xem chi tiết
NA
Xem chi tiết
HA
Xem chi tiết
LT
Xem chi tiết
HT
30 tháng 5 2018 lúc 19:53

a) Ta có\(\widehat{ADB}=\widehat{AFB}=90độ\left(gt\right)\)

Nên tứ giác ABDF nội tiếp ( 2 đỉnh EF cùng nhìn AB với 2 góc bằng nhau)

b) Ta có \(\widehat{AEDC}=90độ\)(góc nội tiếp chắn nửa đường tròn)

Nên ΔACE vuông tại C

Xét 2 tam giác vuông ABD và ACE có

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Nên ΔABD ~ ΔACE

Do đó \(\frac{AB}{AC}=\frac{AD}{AE}\)

Hay AB.AE=AD.AC

c) (Mình nghĩ câu này bạn ghi nhầm, theo mình thì ở đây ta phải chứng minh DF vuông góc AC)

Ta có \(\widehat{DFE}=\widehat{ABD}\)(tứ giác ABDF nội tiếp)

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Do đó \(\widehat{DFE}=\widehat{AEC}\)

Ta lại có 2 góc này ở vị trí so le trong

Nên DF song song EC

Mà EC vuông góc AC

Suy ra DF vuông góc AC

Bình luận (0)
HN
Xem chi tiết