a: Xét ΔABE và ΔADC có
\(\widehat{ABE}=\widehat{ADC}\)
\(\widehat{BAE}=\widehat{DAC}\)
Do đó: ΔABE\(\sim\)ΔADC
Suy ra: \(AB\cdot AC=AD\cdot AE\)
a: Xét ΔABE và ΔADC có
\(\widehat{ABE}=\widehat{ADC}\)
\(\widehat{BAE}=\widehat{DAC}\)
Do đó: ΔABE\(\sim\)ΔADC
Suy ra: \(AB\cdot AC=AD\cdot AE\)
Cho tam giác ABC nội tiếp đường tròn O. Tia phân giác góc A cắt BC tại D và cắt đường tròn tại E. Chứng minh
a) AB.AC=AD.AE b) BE2=AE.DE
Cho tam giác ABC nội tiếp đường tròn tâm O . Gọi D,E lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C . Đường thẳng DE cắt BC tại I,cắt cung nhỏ BC ở M .Chứng minh : a.Ba điểm A,D,E thẳng hàng .b.Tứ giác BDCE nội tiếp được trong đường tròn .c.BI.IC=ID.IE
Cho tam giác ABC nội tiếp đường tròn O. Tia phân giác của góc A cắt BC ở D và cắt đường tròn tại M. Đường phân giác của góc ngoài đỉnh A của tam giác ABC cắt đường tròn ở N. CMR:
a) Góc BMC= góc ABC + góc ACB
b) OM vuông góc với BC
c) M; O; N thẳng hàng
d) AD.AM = AB.AC
e) MB.MC=MD.MA.
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh: a/ BC song song với DE b/ Tam giác AMB đồng dạng tam giác MCE c/ Tam giác AMC đồng dạng tam giác MDB d/ Nếu AC=CE thì MA^2 = MD.ME
Cho tam giá ABC nội tiếp đường tròn tâm O tia phân giác của góc A cắt tam giác ABC ở D và cắt đường tròn ở E . Cmr
a, AB×AC = AD×AE
b, BE bình phương bằng AE×DE
Cho tam giác ABC nội tiếp đường tròn tâm O. Các tia phân giác của các góc A và B cắt nhau ở I và cắt đường tròn theo thứ tự ở D và E. Chứng minh:
a, Tam giác BDI là tam giác cân
b, DE là đường trung trực của IC
c, IF và BC song song, trong đó F là giao điểm của DE và AC
Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Tia phân giác của góc \(\widehat{ABC}\)cắt
đường tròn (O) ở D, tia phân giác \(\widehat{ACB}\)cắt đường tròn (O) ở E. Chứng minh rằng:
AD = AE
Cho tam giác ABC nội tiếp đường tròn tâm O. Phân giác góc BAC cắt (O) ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt ở D và E. Chứng minh BC và DE song song