Bài 1 : Chứng minh rằng : \(3a +2b \vdots {17} \) <=> \(10a+b \vdots{17} ( a, b \in Z )\)
Chứng minh rằng 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b thuộc Z)
Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )
Bài 6 Cho 3a + 2b thuộc 17 (a,bEN). Chứng minh rằng: 10a + b thuộc 17
Bài 10
cho 3a+2b chia hết 17(a,b thuộc N). Chứng minh rằng 10a+b chia hết 17
Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
= 17a
Vì 17chia hết cho17=> 17a chia hết cho 17
=> 2.(10a+b)- (3a +2b) chia hết cho 17
Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
Mà (2,17) =1=> 10a+b chia hết cho 17
Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17
Bài 33: (có gạch đầu)
-Gọi ac là số tự nhiên kém ab 1 đơn vị.
-Theo đề bài ta có:
aacb=ab.91
a.1100+c.10+b=910a+91b
190a+10c=90b
=> 19a+c=9b
=> 19a=9b-c
Sau đó cậu nhận xét, chặn rồi thử, chọn vào là OK!
Chứng minh rằng : 3a+2b \(⋮\)17 \(\Leftrightarrow\)10a+b \(⋮\)17 (a,b\(\in\)Z )
+, 3a+2b chia hết cho 17
=> 9.(3a+2b) chia hết cho 17
=> 27a + 18b chia hết cho 17
Mà 17a và 17b đều chia hết cho 17
=> 27a+18b-17a-17b chia hết cho 17
=> 10a+b chia hết cho 17
+, 10a+b chia hết cho 17
=> 10a+b+17a+17b chia hết cho 17
=> 27a+18b chia hết cho 17
=> 9.(3a+2b) chia hết cho 17
=> 3a+2b chia hết cho 17 ( vì 9 và 17 là 2 số nguyên tố cùng nhau )
Vậy ............
Tk mk nha
\(3a+2b⋮17\)\(\left(a,b\inℤ\right)\)
\(\Rightarrow10\cdot\left(3a+2b\right)⋮17=\left(30a+20b\right)⋮17\)
\(10a+b⋮17\)
\(\Rightarrow3\cdot\left(10a+b\right)⋮17=\left(30a+3b\right)⋮17\)
\(\Rightarrow\left(30a+20b\right)-\left(30a+3b\right)⋮17\)
\(\Rightarrow30a+20b-30a-3b⋮17\)
\(\Rightarrow17b⋮17\)
Có \(17⋮17\)nên \(10a+b⋮17\)
Chứng minh rằng: 3a+2b chia hết cho 17 <=> 10a+b chia hết cho 17 (a,b thuộc Z)
Giúp mk với...
Có 3a+2b :17
=> 3a+2b+17a :17
20a+2b :17
2(10a+b) :17. Mà ƯCLN(2;17)=1 => 10a+b :17
Ủng hộ mk nha
Đặt \(10a+b\) là \(N\) và \(M=3a+2b\)
Ta có M + 17a = 3a+2b+17a = 2 ( 10a+7 ) = 2 N
+ Nếu N chia hết cho 7 thì 2N chia hết cho 17
Suy ra M + 17a chia hết cho 17 , suy ra M chia hết cho 17
+ Nếu M chia hết cho 17 thì M + 17a chia hết cho 17
Suy ra 2N chia hết cho 17 , suy ra N chia hết cho 17
cho 3a+2b :17(a,b thuộc N) . chứng minh rằng : 10a+b:17
Lời giải:
$3a+2b\vdots 17$
$\Rightarrow 3a+2b+17a\vdots 17$
$\Rightarrow 20a+2b\vdots 17$
$\Rightarrow 2(10a+b)\vdots 17$
$\Rightarrow 10a+b\vdots 17$ (do $(2,17)=1$)
Ta có đpcm.
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
51a:17
=> 51a-a+5b:17
=> 50a+5b:17
=> 5(10a+b):17
=> 10a+b:17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
Cho a,b thuoc .Chứng minh rằng:
1)3a+2b chia hết cho 17<=>10a+b chia hết cho 17
2)a-5b chia hết cho 17<=>10a+b chia hết cho 17