3𝑥(3𝑥 − 2) − (𝑥 − 1)^2
Tìm mệnh đềphủđịnh mệnh đề𝐴:"∀𝑥∈𝑅,𝑥2−3𝑥=5".
A. 𝐴:"∃𝑥∈𝑅,𝑥2−3𝑥>5".
B. 𝐴:"∃𝑥∈𝑅,𝑥2−3𝑥≠5".
C. 𝐴:"∃𝑥∈𝑅,𝑥2−3𝑥<5".
D. 𝐴:"∃𝑥∉𝑅,𝑥2−3𝑥=5".
(𝑥−1)3−(𝑥+1)(𝑥2−𝑥+1)−(3𝑥+1)(1−3𝑥)
\(\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\\ =\left(x^3-3x^2+3x-1\right)-\left(x^3+1\right)-\left(1-9x^2\right)\\ =x^3-3x^2+3x-1-x^3-1-1+9x^2\\ =6x^2+3x-3\)
Biến đổi về các hằng đẳng thức, tìm giá trị nhỏ nhất của các biểu thức:
a) 𝐴 = −𝑥^2+ 2𝑥 + 5
b) 𝐵 = −𝑥^2− 8𝑥 + 10
c) 𝐶 = −3𝑥^2+ 12𝑥 + 8
d) 𝐷 = −5𝑥^2+ 9𝑥 − 3
e) 𝐸 = (4 − 𝑥)(𝑥 + 6) f)
𝐹 = (2𝑥 + 5)(4 − 3𝑥)
g) 𝐺 = (2 − 3𝑥)(2𝑥 + 3)
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)
Bài 3: Chia đa thức đã sắp xếp
1. (𝑥³ − 9 + 27x − 11𝑥² ) : (x – 3)
2. (−3𝑥³ − 9x + 5𝑥² + 15) : (5 – 3x)
3. (3𝑥⁴+ 11𝑥⁴ − 5x² – 19x + 10) : (𝑥 ²+ 3x – 2)
1: \(\dfrac{x^3-11x^2+27x-9}{x-3}\)
\(=\dfrac{x^3-3x^2-8x^2+24x+3x-9}{x-3}\)
\(=x^2-8x+3\)
2: \(\dfrac{-3x^3+5x^2-9x+15}{-3x+5}\)
\(=\dfrac{3x^3-5x^2+9x-15}{3x-5}\)
\(=x^2+3\)
𝑥^3 − 𝑥^2 + 3𝑥 − 3 : 𝑥^2 + 3= ??
\(\left(x^3-x^2+3x-3\right):\left(x^2+3\right)\\ =\left[\left(x^3-x^2\right)+\left(3x-3\right)\right]:\left(x^2+3\right)\\ =\left[x^2\left(x-1\right)+3\left(x-1\right)\right]:\left(x^2+3\right)\\ =\left[\left(x^2+3\right)\left(x-1\right)\right]:\left(x^2+3\right)\\ =x-1\)
(2𝑥2−𝑥+1)(3𝑥−2)
(2x2 - x + 1)(3x - 2)
= 6x3 - 4x2 - 3x2 + 2x + 3x - 2
= 6x3 - 7x2 + 5x - 2
1) Làm tính nhân
a) 𝑥.(𝑥^2–5)
b) 3𝑥𝑦(𝑥^2−2𝑥^2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥^2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
Bài 3:
a. $x^2+2x=x(x+2)$
b. $x^2-6x+9=x^2-2.3x+3^2=(x-3)^2$
c. $5(x-y)-y(y-x)=5(x-y)+y(x-y)=(x-y)(5+y)$
d. $2x-y^2+2xy-y=(2x-y)+(2xy-y^2)=(2x-y)-y(2x-y)=(2x-y)(1-y)$
e.
$6x^3y^4+12x^2y^3-18x^3y^2=6x^2y^2(xy^2+2y-3x)$
𝑎)2𝑥−1𝑥−3+4=−1𝑥−3
⇔2x-1x+1x=-3+3-4
⇔2x=-4
⇔x=-2
𝑏)3𝑥−22𝑥+5=6𝑥+14𝑥−3
⇔5+3=6x+14x-3x+22x
⇔8=39x
⇔x=\(\frac{8}{39}\)
𝑐)𝑥+3𝑥+1+𝑥−2𝑥=2
⇔x+3x+x-2x=2-1
⇔3x=1
⇔x=\(\frac{1}{3}\)
𝑑)x+1−2𝑥−3𝑥−1=2𝑥+3𝑥2−1
⇔3x2+2x+2x+3x-x-1-1+1=0
⇔3x2+6x-1=0
⇔3x2+3x+3x+3-4=0
⇔3x(x+1)+3(x+1)-4=0
⇔3(x+1)(x+1)-4=0
⇔3(x+1)2-4=0
⇔(x+1)2=\(\frac{4}{3}\)
⇔\(\left[{}\begin{matrix}x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}-1\\x=-\frac{4}{3}-1\end{matrix}\right.\)
Vậy ...
a, 2x - x - 3 + 4 = -x - 3
\(\Leftrightarrow\) x + 1 = -x - 3
\(\Leftrightarrow\) x + x = -3 - 1
\(\Leftrightarrow\) 2x = -4
\(\Leftrightarrow\) x = -2
Vậy S = {-2}
b, 3x - 22x + 5 = 6x + 14x - 3
\(\Leftrightarrow\) -19x + 5 = 20x - 3
\(\Leftrightarrow\) -19x - 20x = -3 - 5
\(\Leftrightarrow\) -39x = -8
\(\Leftrightarrow\) x = \(\frac{8}{39}\)
Vậy S = {\(\frac{8}{39}\)}
c, x + 3x + 1 + x - 2x = 2
\(\Leftrightarrow\) 3x + 1 = 2
\(\Leftrightarrow\) 3x = 2 - 1
\(\Leftrightarrow\) 3x = 1
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Phần d mình ko hiểu, bạn viết rõ được ko!
Chúc bn học tốt!!
d, x + 1 - 2x - 3x - 1 = 2x + 3x2 - 1
\(\Leftrightarrow\) x + 1 - 2x - 3x - 1 - 2x - 3x2 + 1 = 0
\(\Leftrightarrow\) -3x2 - 6x + 1 = 0
\(\Leftrightarrow\) -(3x2 + 6x - 1) = 0
\(\Leftrightarrow\) 3x2 + 6x - 1 = 0
\(\Leftrightarrow\) 3x2 + 3x + 3x + 3 - 4 = 0
\(\Leftrightarrow\) 3x(x + 1) + 3(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)2 - 4 = 0
\(\Leftrightarrow\) (x + 1)2 = \(\frac{4}{3}\)
\(\Leftrightarrow\) x + 1 = \(\sqrt{\frac{4}{3}}\) hoặc x + 1 = \(-\sqrt{\frac{4}{3}}\)
\(\Leftrightarrow\) x = \(\sqrt{\frac{4}{3}}\) - 1 và x = \(-\sqrt{\frac{4}{3}}\) - 1
\(\Leftrightarrow\) x = \(\frac{2\sqrt{3}-3}{3}\) và x = \(\frac{-2\sqrt{3}-3}{3}\)
Vậy S = {\(\frac{2\sqrt{3}-3}{3}\); \(\frac{-2\sqrt{3}-3}{3}\)}
Chúc bn học tốt!!
Nguyễn Thị Anh Thư cái này bạn gửi một lần r mà!