Những câu hỏi liên quan
NN
Xem chi tiết
LH
9 tháng 10 2018 lúc 20:14

Theo BĐT cô-si ta có

\(\sqrt{x-1}=1\cdot\sqrt{x-1}\le\frac{1+x-1}{2}=\frac{x}{2}\)

\(\sqrt{y-2}=1\cdot\sqrt{y-2}\le\frac{1+y-2}{2}=\frac{y-1}{2}\)

\(\Rightarrow\sqrt{x-1}+\sqrt{y-2}\le\frac{x}{2}+\frac{y-1}{2}=\frac{x+y-1}{2}=\frac{3}{2}\)

Bình luận (0)
DT
Xem chi tiết
AH
13 tháng 9 2021 lúc 9:33

Lời giải:
TXĐ: $[-1;1]$

$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$

$y'=0\Leftrightarrow x=0$

$f(0)=2$;

$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$

Bình luận (0)
LC
Xem chi tiết
H24
2 tháng 8 2020 lúc 7:07

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

Bình luận (0)
 Khách vãng lai đã xóa
LC
2 tháng 8 2020 lúc 14:49

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

Bình luận (0)
 Khách vãng lai đã xóa
LC
2 tháng 8 2020 lúc 14:49

toàn 1 lũ hãm điểm

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
TC
1 tháng 4 2022 lúc 17:33

giải bằng Bunhiaskopki nha bạn, search gg

Bình luận (0)
XO
1 tháng 4 2022 lúc 17:34

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

Bình luận (0)
TD
Xem chi tiết
TN
16 tháng 11 2016 lúc 22:17

Bài 1:

\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)

\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

Dấu = khi \(x=\sqrt{\frac{3}{2}}\)

Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)

Bình luận (0)
PT
Xem chi tiết
LF
19 tháng 2 2017 lúc 22:57

Đk: \(x\ge2;y\ge-1;0< x+y\le9\)

Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)

Từ giả thiết suy ra

\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)

Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:

\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)

\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)

Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)

Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NL
13 tháng 12 2020 lúc 16:38

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

Bình luận (0)