Tìm x biết
2006 . |x-1|+(x-1)^2=2005 |1-x|
Tìm x,y biết
a,\(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=994-15:3+1^{2025}\)
b,\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
c,\(2024^{|x-1|+y^2-1}\cdot3^{2024}=9^{1012}\)
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
các bạn giúp mình với mình đang vội.
tìm x,y biết
a,\(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
b,\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
c,\(2024^{\left|x-1\right|=y^2-1}\cdot3^{2024}=9^{1012}\)
a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
Tìm x biết
2006.|x-1|+(x-1)^2=2005.|1-x|
troi mk dang bao phamdangkhoi ma
tìm nghiệm nguyên dương của phương trình ?
\(\left(1+x+\sqrt{x^2-1}\right)^{2005}+\left(1+x-\sqrt{x^2-1}\right)^{2005}=2^{2006}\)
\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)
Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)
Áp dụng Côsi ta có:
\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)
\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)
\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)
\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)
Dấu "=" xảy ra khi và chỉ khi t = 1.
Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)
\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)
Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)
b2 tìm x thuộc Z
-2005 < | x | >_ 1
2005 - | x - 10 | có GTLN
-2005 < ( x + 5 ) < _ 1
| x + 2 | + | x + 5 | + | x + 1 | =5x
| x | + | x -1 | = 3x -2006
< _ là lớn hơn hoặc bằng hoặc > _ bé hơn hoặc =
Tìm x biết:
2006.|x-1| + (x-1)2 = 2005. |1-x|
Ta có :
\(2006\left|x-1\right|+\left(x-1\right)^2=2005\left|1-x\right|\)
\(\Rightarrow2006\left|x-1\right|+\left(x-1\right)^2=2005\left|x-1\right|\)
\(\Rightarrow2006\left|x-1\right|+\left(x-1\right)^2-2005\left|x-1\right|=0\)
\(\Rightarrow\left|x-1\right|+\left(x-1\right)^2=0\)
Vì \(\begin{cases}\left|x-1\right|\ge0\\\left(x-1\right)^2\ge0\end{cases}\)\(\forall x\)
\(\Rightarrow\begin{cases}x-1=0\\x-1=0\end{cases}\)
=> x = 1
Vậy x = 1
Tìm x biết:
2006.|x-1| + (x-1)2 = 2005. |1-x|
Tìm x : 1/3 + 1/6 + 1/10 + ... + 2/x(x+1 ) = 2003/2005
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2003/2005
2 × ( 1/6 + 1/12 + 1/20 + ... + 1/x(x+1) = 2003/2005
1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x+1) = 2003/2005 : 2
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1 = 2003/2005 × 1/2
1/2 - 1/x+1 = 2003/4010
1/x+1 = 1/2 - 2003/4010
1/x+1 = 2005/4010 - 2003/4010
1/x+1 = 1/2005
=> x+1 = 2005
=> x = 2004
Vậy x = 2004
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2005}\)
\(\Leftrightarrow x+1=2005\)
\(\Leftrightarrow x=2004\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2005}\)
\(\Leftrightarrow x=2004\)
Tìm x : 1/3 + 1/6 + 1/10 + ... + 2/x(x+1 ) = 2003/2005
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2003/2005
2 × ( 1/6 + 1/12 + 1/20 + ... + 1/x(x+1) = 2003/2005
1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x+1) = 2003/2005 : 2
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1 = 2003/2005 × 1/2
1/2 - 1/x+1 = 2003/4010
1/x+1 = 1/2 - 2003/4010
1/x+1 = 2005/4010 - 2003/4010
1/x+1 = 1/2005
=> x+1 = 2005
=> x = 2004
Vậy x = 2004
ai tích mk tích lại cho
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2003/2005
2 × ( 1/6 + 1/12 + 1/20 + ... + 1/x(x+1) = 2003/2005
1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x+1) = 2003/2005 : 2
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1 = 2003/2005 × 1/2
1/2 - 1/x+1 = 2003/4010
1/x+1 = 1/2 - 2003/4010
1/x+1 = 2005/4010 - 2003/4010
1/x+1 = 1/2005
=> x+1 = 2005
=> x = 2004
Vậy x = 2004
ai tích mk tích lại cho
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2003/2005
2 x (1/6 + 1/12 + 1/20 + ... + 1/x(x+1) = 2003/2005
1/2x3 + 1/3x4 + 1/4x5 + ... + 1/x(x+1) = 2003/2005 : 2
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1 = 2003/2005 x 1/2
1/2 - 1/x+1 = 2003/4010
1/x+1 = 1/2 - 2003/4010
1/x+1 = 2005/4010 - 2003/4010
1/x+1 = 1/2005
=> x+1 = 2005
=> x=2004
Vậy x = 2004