Những câu hỏi liên quan
GM
Xem chi tiết
TV
25 tháng 6 2023 lúc 18:42

Ta có thể sử dụng công thức Newton về đa thức để giải bài toán này. Đặt đa thức $P(x) = (x-a)(x-b)(x-c) = x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc$.

Do $a+b+c=0$, nên $P(x) = x^3 - 3kx - abc$ với $k = \frac{ab+bc+ca}{a+b+c}$.

Ta có thể tính được $a^2+b^2+c^2 = -2(ab+bc+ca)$.

Đặt $S_n = a^n + b^n + c^n$. Ta có thể suy ra các công thức sau:

$S_1 = 0$

$S_2 = a^2 + b^2 + c^2 = -2(ab+bc+ca)$

$S_3 = 3abc$

$S_4 = (a^2+b^2+c^2)^2 - 2(a^2b^2+b^2c^2+c^2a^2) = 2(ab+bc+ca)^2 - 3abc(a+b+c)$

$S_5 = 5(ab+bc+ca)(a^2+b^2+c^2) - 5abc(a+b+c)$

$S_6 = (a^2+b^2+c^2)^3 - 3(a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2) + 2(a^2b^2c^2)$

$S_7 = 7(ab+bc+ca)(a^2+b^2+c^2)^2 - 14abc(a^2+b^2+c^2) + 7a^2b^2c^2$

Từ đó, ta có thể tính được $S_1, S_2, S_3, S_4, S_5, S_6$ dựa trên các giá trị đã biết.

Đặt $T_n = a^n+b^n+c^n - S_n$. Ta có thể suy ra các công thức sau:

$T_1 = 0$

$T_2 = 2S_2$

$T_3 = 3S_3$

$T_4 = 2S_2^2 - 4S_4$

$T_5 = 5S_2S_3 - 5S_5$

$T_6 = 2S_2S_4 + 3S_3^2 - 6S_6$

$T_7 = 7S_2S_5 - 14S_3S_4 + 7S_7$

Do $S_1=S_3=0$, nên $T_1=T_3=0$.

Từ $a+b+c=0$, ta có $a^2+b^2+c^2 = -2(ab+bc+ca)$. Do đó, $S_2 = 2(ab+bc+ca)$ và $S_4 = 2(ab+bc+ca)^2 - 3abc(a+b+c) = 2(ab+bc+ca)^2$.

Từ $a^7+b^7+c^7=0$, ta có $T_7 = 7S_2S_5 - 14S_3S_4 + 7S_7 = 7S_2S_5 - 14S_4S_3 + 7S_7 = 7S_7$.

Từ $T_7 = 7S_7$, ta có $S_7 = \frac{T_7}{7} = 0$.

Do đó, $T_6 = 2S_2S_4 + 3S_3^2 - 6S_6 = 2(2(ab+bc+ca))(2(ab+bc+ca)^2) + 3(abc)^2 - 6S_6 = 12(ab+bc+ca)^2 + 3(abc)^2 - 6S_6$.

Từ $T_6 = 12(ab+bc+ca)^2 + 3(abc)^2 - 6S_6$, ta có $S_6 = \frac{1}{6}(12(ab+bc+ca)^2 + 3(abc

Bình luận (0)
NT
25 tháng 6 2023 lúc 21:37

Giải

Vì a + b + c = 0 nên a + b = -c

Ta có:

\(a^7+b^7=\left(a+b\right)\left(a^6-a^5b+a^4b^2-a^3b^3+a^2b^4-ab^5+b^6\right)\\ =-c\left(a^6-a^5b+a^4b^2-a^3b^3+a^2b^4-ab^5+b^6\right)\\ =c\left(-a^6+a^5b-a^4b^2+a^3b^3-a^2b^4+ab^5-b^6\right)\\ =c\left[-\left(a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6\right)+\left(7a^5b+14a^4b^2+21a^3b^3+14a^2b^4+7ab^5\right)\right]\\ =c\left[-\left(a+b\right)^6+7ab\left(a^4+2a^3b+3a^2b^2+2ab^3+b^4\right)\right]\\ =c\left\{-\left(a+b\right)^6+7ab\left[\left(a^2+b^2\right)^2+2ab\left(a^2+b^2\right)+3a^2b^2-2a^2b^2\right]\right\}\\ =c\left\{-\left(a+b\right)^6+7ab\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\right\}\\ =c\left\{-c^6+7ab\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\right\}\\ =-c^7+7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\\ \Rightarrow a^7+b^7+c^7=7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\Rightarrow7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]=0\)TH1: \(\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2=0\)

Vì \(a^2,b^2,\left(a+b\right)^2,a^2b^2\ge0\) nên \(\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi a = b = 0

Mà a + b + c = 0 nên suy ra c = 0

Vậy \(a^{2023}+b^{2023}+c^{2023}=0\)

TH2: abc = 0

Vì abc = 0 nên sẽ có ít nhất một trong ba số a, b, c = 0

Vì a, b, c có vai trò như nhau nên không mất tính tổng quát, giả sử \(c=0\)

Mà a + b + c = 0 nên a + b =0 hay a = -b

\(\Rightarrow a^{2023}+b^{2023}+c^{2023}=0\)

Kết luận: \(a^{2023}+b^{2023}+c^{2023}=0\)

Bình luận (0)
NQ
Xem chi tiết
NP
Xem chi tiết
XO
7 tháng 7 2021 lúc 13:41

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=> \(\frac{a+b}{ab}=-\frac{a+b}{\left(a+b+c\right)c}\)

<=> \(\left(a+b\right)\left[\frac{1}{ab}+\frac{1}{\left(a+b+c\right).c}\right]=0\)

<=> \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(a+b+c\right)c}=0\)

<=> (a + b)(b + c)(c + a) = 0

<=> a = -b hoặc b = -c hoặc c = -a

Với a = -b => \(\frac{1}{a^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{-b^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{c^7}\left(1\right)\)

\(\frac{1}{a^7+b^7+c^7}=\frac{1}{-b^7+b^7+c^7}=\frac{1}{c^7}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{a^7+b^7+c^7}\)

Tương tự với b =- c và c = -a ta cũng chứng minh được đẳng thức trên 

=> ĐPCM 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
25 tháng 7 2021 lúc 15:02

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

Bình luận (0)
NT
25 tháng 7 2021 lúc 15:07

Bài 1 : 

a^2 + b^2 + 9 = ab + 3a + 3b 

<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b 

<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0 

<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0 

Dấu ''='' xảy ra khi a = b = 3 

Bình luận (0)
NL
25 tháng 7 2021 lúc 15:14

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Bình luận (0)
H24
Xem chi tiết
NL
25 tháng 3 2022 lúc 20:44

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

Bình luận (0)
NL
25 tháng 3 2022 lúc 20:56

2.

Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)

\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)

Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)

\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)

\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)

Do \(a;b;c\in\left[0;1\right]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow ab+c+1\ge a+b+c=2\)

\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)

\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)

\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)

Hoàn toàn tương tự, ta có: 

\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)

Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)

\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)

\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng

Bình luận (0)
LJ
Xem chi tiết
ML
27 tháng 10 2021 lúc 9:17

TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24

Bình luận (0)
LT
Xem chi tiết
NC
23 tháng 11 2019 lúc 9:56

Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PB
Xem chi tiết
CT
29 tháng 11 2018 lúc 10:06

Đáp án B

Áp dụng bất đẳng thức giá trị tuyệt đối và bất đẳng thức BCS, ta có kết quả sau:

2 a + b - 2 c + 7 = 2 a + 1 + b - 2 - 2 c + 11 ≤ 2 a - 1 + b - 2 - 2 c + 11 ≤ a - 1 2 + b - 2 2 + c 2 2 2 + 1 2 + - 2 2 + 11 = 20

Cách 2: phương pháp hình học.

Trong không gian Oxyz, gọi mặt cầu (S) có tâm I(1;2;0), bán kính R=3. Khi đó:

Bài toán đã cho trở thành:

Tìm  M ∈ ( S )  sao cho d(M;(P)) lớn nhất

Gọi △  là đường thẳng qua I và vuông góc (P)

Phân tích: Khi quan sát 2 cách giải, đối với giáo viên ta sẽ dễ chọn Cách 1 vì ngắn gọn và tiết kiệm thời gian. Tuy nhiên học sinh không nhiều em đã từng được tiếp cận bất đẳng thức BCS. Đối với Cách 2, về mặt trình bày có thể dài hơi, nhiều tính toán hơn nhưng đó chỉ là những bước tính toán khá cơ bản, một học sinh khá nếu nhận ra ý đồ tác giả thì việc giải bài toán cũng không mất quá nhiều thời gian. Bài toán sẽ dễ hơn nếu đề bài chỉ yêu cầu tìm Min hoặc Max của biểu thức  2 a + b - 2 c + 7

 

 

Bình luận (0)