Giải phương trình
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
Giải phương trình: \(2.\left(x-\sqrt{2x^2+5x-3}\right)=1+x.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
giải phương trình: \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
giải phương trình \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\)
\(\Leftrightarrow5x^4+\left(2x+1-2\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
có \(\hept{\begin{cases}5x^4\ge0\\\left(\sqrt{2x+1}-1\right)^2\ge0\end{cases}}\)mà \(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\Rightarrow\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=0\\\sqrt{2x+1}=1\end{cases}\Leftrightarrow x=0}\)
vạy x=0 là nghiệm của phương trình
Cre: Đàm Hải Ngọc
cái này dùng liên hợp dễ hơn
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\left(đk:x\ge-\frac{1}{2}\right)\)
\(< =>x\left(5x^3+2\right)-2.\frac{2x+1-1}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2\right)-x.\frac{4}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2-\frac{4}{\sqrt{2x+1}+1}\right)=0< =>x=0\)
giờ dùng đk đánh giá cái ngoặc to vô nghiệm là ok
Giải phương trình
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
điều kiện xác đinh \(x\ge-\frac{1}{2}\)
ta có \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\Leftrightarrow5x^4+2x+1-2\sqrt{2x+1}+1=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0=>\orbr{\begin{cases}5x^4=0\\\sqrt{2x+1}-1=0\end{cases}\Leftrightarrow x=0\left(nhận\right)}\)
zậy \(S=\left\{0\right\}\)
ĐK: \(x\ge\frac{-1}{2}\). PT đã cho có thể viết lại thành
\(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
Do \(5x^4\ge0,\left(\sqrt{2x+1}-1\right)^2\ge0\)nên PT trên chỉ thỏa mãn khi \(\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\)
Giải hệ này ta được x=0
Vậy PT đã cho có nghiệm duy nhất x=0
Giải phương trình sau : \(x^2-x-18+\left(2x+9\right)\sqrt{x+3}-2\sqrt{5x-1}=0\)
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Giải phương trình
\(4\left(2x^2+1\right)+3\left(x^2-2x\right)\sqrt{2x-1}=2\left(x^3+5x\right)\)
Giải phương trình \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
ĐKXĐ: \(\hept{\begin{cases}x^2-5x+2\ge0\\2x-1>0\\x-2\ge0\end{cases}\Leftrightarrow x\ge2}\)
Phương trình
\(\Leftrightarrow\sqrt{x-2}\sqrt{2x-1}-x\sqrt{x-2}+3x-x^2-3\sqrt{2x-1}+x\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-x\right)\left(\sqrt{x-2}-3+x\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=x\\\sqrt{x-2}=3-x\end{cases}}\)
<=> 2x-1=x2 hoặc \(\hept{\begin{cases}3-x\ge0\\x-2=3-x^2\end{cases}}\)
<=> x2-2x+1=0 hoặc \(\hept{\begin{cases}x\le3\\x^2-7x+11=0\end{cases}}\)
<=> x=1 hoặc \(\hept{\begin{cases}x\le3\\x=\frac{7\pm\sqrt{3}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{7-\sqrt{5}}{2}\end{cases}}\)
Đối chiếu điều kiện x>=2 => x=\(=\frac{7-\sqrt{5}}{2}\left(tm\right)\)
Vậy pt có nghiệm \(x=\frac{7-\sqrt{5}}{2}\)
đề bài có sai ko vậy