Những câu hỏi liên quan
NT
Xem chi tiết
DK
Xem chi tiết
JE
Xem chi tiết
TN
5 tháng 2 2021 lúc 10:34

\(\lim\dfrac{1+2.3^{n}-7^{n}}{a+5^{n}+a.7^{n-1}} =\lim\dfrac{(\dfrac{1}{7})^{n}+2.(\dfrac{3}{7})^{n}-1}{a.(\dfrac{1}{7})^{n}+(\dfrac{5}{7})^{n}+\dfrac{a}{7}} =\lim\dfrac{-1}{\dfrac{a}{7}} =\dfrac{-7}{a}\)

Bình luận (0)
TQ
Xem chi tiết
NC
Xem chi tiết
NL
19 tháng 2 2020 lúc 15:00

a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)

b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)

c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)

d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
19 tháng 2 2020 lúc 15:05

e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)

f/ Ta có công thức:

\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)

\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)

g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)

h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
AH
10 tháng 4 2020 lúc 22:32

1.

\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)

2.

\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)

3.

\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)

\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)

4.

\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)

5.

\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)

\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)

Bình luận (0)
H24
Xem chi tiết
NH
15 tháng 8 2016 lúc 13:26

lim\(\frac{2^n+4^n+5^n}{2.3^n+4^n+3.5^n}\)

=lim\(\frac{\left(\frac{2}{5}\right)^n+\left(\frac{4}{5}\right)^n+1}{2.\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-3}=-\frac{1}{3}\)

Bình luận (0)
TQ
Xem chi tiết
VN
Xem chi tiết
AH
21 tháng 1 2020 lúc 21:43

$n$ tiến đến đâu vậy bạn?

Bình luận (0)
 Khách vãng lai đã xóa
AH
21 tháng 1 2020 lúc 23:09

Câu 2:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
21 tháng 1 2020 lúc 23:13

Câu 3:

Ta biết rằng $\lim_{x\to \infty}\frac{1}{x}=0\Rightarrow \lim_{x\to \infty}\frac{a}{x}=0$ với $a\in\mathbb{R}$

Do đó:

$\lim_{n\to \infty}\frac{1}{n^2}=0$

$\lim_{n\to \infty}\frac{2}{n^2}=0$

.....

$\lim_{n\to \infty}\frac{2n-1}{n^2}=\lim_{n\to \infty}(\frac{2}{n}-\frac{1}{n^2})=\lim_{n\to \infty}\frac{2}{n}-\lim_{n\to \infty}\frac{1}{n^2}=0-0=0$

Do đó:

$\lim_{n\to \infty}(\frac{1}{n^2}+...+\frac{2n-1}{n^2})=\lim_{n\to \infty}\frac{1}{n^2}+....+\lim_{n\to \infty}\frac{2n-1}{n^2}=0+0+...+0=0$

Bình luận (0)
 Khách vãng lai đã xóa