Những câu hỏi liên quan
TM
Xem chi tiết
MT
Xem chi tiết
LK
2 tháng 2 2019 lúc 16:08

\(\frac{1-x}{x-m}+\frac{x-2}{x+m}=\frac{2\left(x-m\right)-2}{m^2-x^2}\)(ĐK:\(x\ne\pm m\))

\(\Leftrightarrow\frac{\left(1-x\right)\left(x+m\right)+\left(x-2\right)\left(x-m\right)}{\left(x+m\right)\left(x-m\right)}-\frac{2\left(x-m\right)-2}{m^2-x^2}=0\)

\(\Leftrightarrow\frac{x+m-x^2-mx+x^2-mx-2x+2m}{x^2-m^2}+\frac{2x-2m-2}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{-\left(2m+2\right)x+3m+2x-2m-2}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{-2m.x+m-2}{x^2-m^2}=0\)

\(\Rightarrow-2m.x+m-2=0\)

\(\Leftrightarrow x=\frac{m-2}{2m}\)

Để pt vô nghiệm thì \(\frac{m-2}{2m}\) không xác định

Suy ra:\(2m=0\)

Nên \(m=0\)

Bình luận (0)
H24
Xem chi tiết
TL
20 tháng 3 2020 lúc 17:41

\(\frac{1-x}{x-m}+\frac{x-2}{x+m}=\frac{2\left(x-m\right)-2}{m^2-x^2}\left(1\right)\)

\(ĐKXĐ\hept{\begin{cases}x+m\ne0\\x-m\ne0\end{cases}\Leftrightarrow x\ne\pm m}\)

\(\Rightarrow\left(1-x\right)\left(x+m\right)+\left(x-2\right)\left(x-m\right)=2-2\left(x-m\right)\)

<=> (2m-1)x=m-2(*)

+)Nếu \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)

Ta có: (*) \(\Leftrightarrow0x=\frac{-3}{2}\)(vô nghiệm)

+)Nếu \(m\ne\frac{1}{2}\)ta có (*) \(\Leftrightarrow x=\frac{m-2}{2m-1}\)

Xét x=m

\(\Leftrightarrow\frac{m-2}{2m-1}=m\Leftrightarrow m-2=2m^2-m\)

\(\Leftrightarrow2m^2-2m+2=0\)

<=> m2-m+1=0

\(\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(không xảy ra vì vế trái luôn lớn hơn 0)

<=> \(\frac{m-2}{2m-1}\)<=> m-2=-2m2+m

<=> m2=1 <=> \(m=\pm1\)

Vậy phương trình vô nghiệm khi \(\orbr{\begin{cases}m=\frac{1}{2}\\m=\pm1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 3 2020 lúc 17:42

Thanks Đào Phạm Nhật Quỳnh nhé

Bình luận (0)
 Khách vãng lai đã xóa
CD
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
NL
5 tháng 7 2021 lúc 18:36

a.

Khi \(m=2\) pt trở thành:

\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

b.

Để pt có nghiệm \(x=-1\)

\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)

\(\Leftrightarrow-m^2+m+m^2-1=0\)

\(\Leftrightarrow m-1=0\)

\(\Leftrightarrow m=1\)

c.

Pt tương đương:

\(\left(m^2-m\right)x=-\left(m^2-1\right)\)

\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)

Pt vô nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)

Pt có vô số nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)

Bình luận (0)
AH
5 tháng 7 2021 lúc 18:40

Lời giải:

a. Khi $m=2$ thì pt trở thành:

$2x+3=0\Leftrightarrow x=-\frac{3}{2}$

b. Để pt có nghiệm $x=-1$ thì:

$(m^2-m).(-1)+m^2-1=0$

$\Leftrightarrow m-1=0\Leftrightarrow m=1$

c. 

PT $\Leftrightarrow (m^2-m)x=1-m^2$

Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\) 

\(\Leftrightarrow m=0\)

PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)

Để PT có nghiệm thì: $m\neq 0$

 

Bình luận (0)
TH
Xem chi tiết
NT
13 tháng 7 2023 lúc 0:06

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

Bình luận (0)
SH
Xem chi tiết
H24
Xem chi tiết