Những câu hỏi liên quan
NA
Xem chi tiết
LC
Xem chi tiết
DQ
7 tháng 12 2020 lúc 18:59

Đặt \(S=x+2y\Rightarrow x=S-2y\)

Xét 2 trường hợp :

TH1: \(x^2+y^2>1\)từ giả thiết \(\Rightarrow x^2+y^2\le x+y\Leftrightarrow\left(S-2y\right)^2+y^2\le S-y\Rightarrow5y^2-\left(4S-1\right)y+S^2-S\le0\left(1\right)\)

Coi (1) là bất pt bậc 2 đối với ẩn y 

\(\Rightarrow\Delta=\left(4S-1\right)^2-20\left(S^2-S\right)\ge0\Rightarrow4S^2-12S-1\le0\Rightarrow S\le\frac{3+\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(x=\frac{5+\sqrt{10}}{2}\) thỏa mãn \(x^2+y^2>1\)

Vậy \(S_{m\text{ax}}=\frac{3+\sqrt{10}}{2}\)

TH2: Nếu \(x^2+y^2< 1\Rightarrow x+y\le x^2+y^2\)\(\Rightarrow S=x+2y\le x^2+y^2+y< 1+1=2\Rightarrow S< \frac{3+\sqrt{10}}{2}\)

Vậy S lớn nhất là \(\frac{3+\sqrt{10}}{2}\)khi \(x=\frac{5+2\sqrt{10}}{10};y=\frac{5+2\sqrt{10}}{10}\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
BT
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 5 2017 lúc 10:17

Chọn đáp án C.

Bình luận (0)
VK
Xem chi tiết
BT
Xem chi tiết
NL
5 tháng 8 2015 lúc 16:47

 x² + 5y² + 2y - 4xy - 3 = 0 
<=> x² - 4xy + 4y² + y² + 2y + 1 - 4 = 0 
<=> (x - 2y)² + (y + 1)² = 4 (*) 

VÌ (x -2y)², (y+1)² là các số chính phương nên (*) chỉ có các khã năng: 
* KN1: 
{(x-2y)² = 0 
{(y+1)² = 4 
<=> x = 2y và y+1 = ±2 => x = 2y và y = -3 (do ta chọn y nhỏ nhất nên loại y = 1) 
=> x = -6 và y = -3 

* KN2: 
{(x-2y)² = 4 
{y+1)² = 0 
<=> x - 2y = ±2 và y = -1 > -3 tức là ta chọn nghiêm y = -3 mới nhỏ nhất 

Vậy cặp (x, y) cần tìm là: x = -6; y = -3 

Bình luận (0)
NA
Xem chi tiết
NH

\(\dfrac{x-1}{7}\) = \(\dfrac{3}{y+3}\) 

vì x; y  \(\in\) Z nên 3 \(⋮\) y + 3 ⇒  y + 3  \(\in\) { -3; -1; 1; 3} ⇒ y \(\in\) { -6; -4; -2; 0}

⇒ \(\dfrac{x-1}{7}\)  \(\in\) { -1; -3; 3; 1 } ⇒ x - 1 \(\in\) {-7; -21; 21; 7}

 ⇒ x \(\in\) { -6; -20; 22; 8}

Vậy các cặp số x, y nguyên thỏa mãn đề bài là:

(x; y) = ( -6; -6); (-20; -4); (22; -2); (8; 0)

Bình luận (0)
TP
Xem chi tiết
TH
17 tháng 1 2017 lúc 10:23

đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

ta có x.y=3

suy ra \(3k\cdot4k=3\\ k^2\cdot\left(3+4\right)=3\Rightarrow k^2=\frac{3}{7}\)từ đó bạn tìm x và y nhé 

Bình luận (0)
ND
Xem chi tiết
NT
4 tháng 2 2022 lúc 13:49

\(\dfrac{x^3-x^2-x+1}{x^4-2x^2+1}=\dfrac{x^2\left(x-1\right)-\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{1}{x+1}\)

\(\dfrac{5x^3+10x^2+5x}{x^3+3x^2+3x+1}=\dfrac{5x\left(x+1\right)^2}{\left(x+1\right)^3}=\dfrac{5x}{x+1}\)

Bình luận (0)