Tìm tất cả các số nguyên dương x,y thoả mãn
(x!+2)*(y!+2)=(x+y)!
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm tất cả các số nguyên dương \(x;y;z\) thoả mãn : \(3^x+2^y=1+2^z\)
Tìm tất cả các bộ số nguyên dương (x;y;z) thoả mãn \(\dfrac{x}{y}=\dfrac{y+x}{y+z}\) và
(y + 2).(4xz + 6y - 3) là số chính phương.
\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)
\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau
Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP
\(\Rightarrow4y^2+6y-3=k^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)
\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)
Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn
Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)
Tìm tất cả các số nguyên dương x,y thoả mãn: 9/xy-1/y=2+3/x
Dấu / là biểu thị phân số
\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\) vậy
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn 4x2 = 3x + y2
Tìm tất cả các cặp số nguyên dương (x; y) thoả mãn x6 + x3y = y3 + 2y2.
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn
2x^2-xy-x-2y+1=0
1 Tìm tất cả các số nguyên dương m,n thoả mãn \(9^m-3^m=n^4+2n^3+n^2+2n\)
2 Cho hai số nguyên dương x,y thoả mãn \(\left(x+y\right)^2+3x+y+1\) là số chính phương. CMR x=y.
tìm hết tất cả các bộ số nguyên dương (x;y) thoả mãn
x^2+2y^2-3xy+2x-4y+3=0
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)
\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)
\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)
\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)
\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)
Đến đây ta thấy vô lý
P/S:is that true ?
=-12 mà CTV
Tìm tất cả các số nguyên dương thoả mãn:(x+y)^4=40x+41
Tìm tất cả các cặp số nguyên (x;y) thoả mãn: x^2 + 5y^2 + 4xy = 2023