Những câu hỏi liên quan
PM
Xem chi tiết
H24
Xem chi tiết
DH
28 tháng 3 2018 lúc 17:14

Dùng Cô-si ngược dấu: 
Ta có : a\(1+b^2)=a-(ab^2/(1+b^2))>=a-(ab^2/2b)=... 
Tương tự ta có:b/(1+c^2)>=b-bc/2 
c/(1+a^2)>=c-ac/2 
Cộng vế với vế ta có A>=(a+b+c)-(ab+bc+ca)/2 
Mà 3(ab+bc+ca)<=a^2+b^2+c^2+2ab+2bc+2ca 
<=>3(ab+bc+ca)<=(a+b+c)^2 
<=>-(ab+bc+ca)>=-(a+b+c)^2/3 
Thay vào ta có: A>=(a+b+c)-(a+b+c)^2/6=3/2 
Dấu = xảy ra<=>a=b=c=1/3

Bình luận (0)
H24
28 tháng 3 2018 lúc 19:31

đề bài của mình mẫu là 1+2b^2 ko phải 1+b^2

Bình luận (0)
LB
Xem chi tiết
NN
18 tháng 4 2016 lúc 14:53

 Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)

Tương tự ta cũng có 

           \(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)

Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

Bình luận (0)
NM
Xem chi tiết
KS
1 tháng 1 2020 lúc 15:38

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có :

\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{12}\)

Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
KS
13 tháng 10 2019 lúc 21:50

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z^2\right)}\end{cases}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

Bình luận (0)
NT
Xem chi tiết
KS
8 tháng 11 2019 lúc 18:01

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}\end{cases}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
9 tháng 3 2020 lúc 11:00

Phạm Thị Diệu Huyền

Nguyễn Việt Lâm

Phạm Minh Quang

Trần Thanh Phương

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 3 2020 lúc 11:11

Akai Haruma

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
H24
Xem chi tiết
DH
23 tháng 12 2017 lúc 22:04

Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)

\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)

\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
H24
19 tháng 8 2020 lúc 14:56

Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)

Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)

Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong

Bình luận (0)
 Khách vãng lai đã xóa