b) (x-3). /x + 4/ .(x |
2 |
-9)=0 |
Tìm x , biết :
a, x mũ 2 - 2x + 1 = 25
b, 4 x mũ 2 - ( x + 4 ) mũ 2 = 0
c, 9 - 64 x mũ 2 = 0
d, 9 ( 4 x + 3 ) mũ 2 = 16 ( 3 x - 5 ) mũ 2
a. x mũ 2 - 2x + 1 = 25
= x^2 + 2.x.1 + 1^2
= ( x + 1 ) ^2
ko bt có đúng ko nữa, mấy câu kia tui ko bt lm
Giải phương trình :
a.\(x^2+5x^2-3=0\)
b.\(x^2-\left(2\sqrt{3}-1\right)x+4\sqrt{3}-6=0\)
c.\(x^2-6x+9=0\)
d.\(x^2-4\sqrt{3}x-4=0\)
c: \(\Leftrightarrow x-3=0\)
hay x=3
tìm x
a)(x+6)^2-x(x+9)=0
b)6x(2x+5)-(3x+4)(4x-3)=9
c)2x(8x+3)-(4x+1)=13
d)(x-4)^2-x(x+4)=0
e)(x-2)^2-(2x+3)(x-2)=0tìm x
a)(x+6)^2-x(x+9)=0
b)6x(2x+5)-(3x+4)(4x-3)=9
c)2x(8x+3)-(4x+1)=13
d)(x-4)^2-x(x+4)=0
e)(x-2)^2-(2x+3)(x-2)=0
a) \(\left(x+6\right)^2-x\left(x+9\right)=0\)
\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)
\(\Leftrightarrow\)\(3x+36=0\)
\(\Leftrightarrow\)\(x=-12\)
Vậy...
b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)
\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)
\(\Leftrightarrow\)\(23x+12=9\)
\(\Leftrightarrow\)\(x=-\frac{3}{23}\)
Vậy
c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)
\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)
\(\Leftrightarrow\)\(16x^2+2x-14=0\)
\(\Leftrightarrow\)\(8x^2+x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)
Vậy
d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)
\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)
\(\Leftrightarrow\)\(-12x+16=0\)
\(\Leftrightarrow\)\(x=\frac{4}{3}\)
Vậy
e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)
\(\Leftrightarrow\)\(-x^2-3x+10=0\)
\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Vậy
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0
\(a)\)\(x^3-x^2-x+1=0\)
\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt ~
a) x3-x2-x+1 = 0 \(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)\(\Leftrightarrow x^2-1=0\)hoặc x-1=0
\(\Leftrightarrow x=1\)
\(c)\)\(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\)\(\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3+2x\right)=0\)
\(\Leftrightarrow\)\(x^2-3=0\)
Hoặc \(x^2+3+2x=0\)
\(\Leftrightarrow\)\(x^2=3\)
Hoặc \(x\left(x+2\right)=-3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Hoặc \(x;\left(x-2\right)\inƯ\left(-3\right)\)
Ta có bảng :
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x-2\) | \(-3\) | \(1\) | \(3\) | \(-1\) |
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x\) | \(-1\) | \(3\) | \(5\) | \(1\) |
Vậy \(x\in\left\{1;-1;3;-3;5\right\}\)
Chúc bạn học tốt ~
Tìm x, biết :
a, ( x-3)^3 - ( x-3) ( x^2 + 3x+9) + 9( x+1)^2 = 15
b, 4x^2 - 81 = 0
c, x(x-5) ( x+5) - ( x-2) ( x^2 + 2x + 4 ) = 3
d, 25x^2 - 2 = 0
e, ( x+2)^2 = ( 2x-1)^2
f, ( x+2)^2 - x+4 = 0
- Tại câu a có hai bạn ra hai đáp án nên góp thêm lựa ý kiến cho người hỏi đỡ bối rối
a, Ta có : \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
=> \(\left(x-3\right)\left(x^2-6x+9-x^2-3x-9\right)+9\left(x+1\right)^2=15\)
=> \(9\left(x+1\right)^2-9\left(x^2-3x\right)=15\)
=> \(9\left(x^2+2x+1-x^2+3x\right)=15\)
=> \(9\left(5x+1\right)=15\)
=> \(5x=\frac{15}{9}-1=\frac{2}{3}\)
=> \(x=\frac{2}{15}\)
Vậy ....
a) (x-1).(x+2)=0
b) (x+4).(4-x)=0
c) (x+4)(-3x+9)=0
d) (2x-4)(x+3)=0
e) (x2-9).(2x+10)=0
g) (4-x).x2=0
a) (x-1).(x+2)=0
=> +)x-1=0=>x=1
+)x+2=0=>x=-2
vậy x thuộc {1;-2)
b) (x+4).(4-x)=0
suy ra: +) x+4=0=>x=-4
+)4-x=0=>x=4
vậy x thuộc {-4;4}
c) (x+4)(-3x+9)=0
suy ra : +) x+4= 0=>x=-4
+)-3x+9=0=>x=3
vậy x thuộc {-4;3)
d) (2x-4)(x+3)=0
suy ra : +) 2x-4=0=>x=2
+)x+3=0=>x=-3
vậy x thuộc {2;-3}
e) (x2-9).(2x+10)=0
suy ra : +) x2-9=0=>x=9/2
+) 2x+10=0=>x=-5
Vậy x thuộc {9/2;-5}
g) (4-x).x2=0
suy ra : +)4-x=0 => x=4
+) x.2=0=> x=0
Vậy x thuộc {4;0}
HT
ko biết
mình mới học lớp 4 à
chưa học lớp 6
\(a,\left(x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x+2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy ...
\(b,\left(x+4\right)\left(4-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+4=0\\4-x=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-4\\x=4\end{cases}}\)
Vậy ...
Các ý sau làm tương tự nhá !
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0
a) x3- x2 - x +1 = 0. ⇒ ( x3 - x2 ) - ( x - 1 ) = 0
⇒ x2. ( x - 1) - 1.( x - 1 ) = 0 ⇒ ( x2 - 1 ).(x - 1) = 0
⇒ x2 - 1 = 0 hoặc x - 1 = 0 ⇒ x2 = 1 hoặc x = 1
Vậy x = 1
b: Sửa đề: \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
=><\(4x^2-12x+9-4x^2+9=0\)
=>-12x+18=0
=>x=3/2
c: \(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
=>(x^2-3)(x^2+2x+3)=0
=>x^2-3=0
hay \(x=\pm\sqrt{3}\)
d: =>(x+5)(2-x)=0
=>x=2 hoặc x=-5
Tìm x,biết
a)\(\left(x-2^2\right)-1=0\)
b)\(4-\left(x-2\right)^2=0\)
c)\(x^2-9-\dfrac{8}{9}x^2=0\)
d)\(\left(3x-2\right)^2-\left(2x+3\right)^2=5\left(x+4\right)\left(x-4\right)\)
a. (x - 22) - 1 = 0
<=> x - 4 - 1 = 0
<=> x = 5
b. 4 - (x - 2)2 = 0
<=> 22 - (x - 2)2 = 0
<=> (2 - x + 2)(2 + x - 2) = 0
<=> x(4 - x) = 0
<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)
<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)
<=> (x - 5)(5x + 1) = 5x2 - 80
<=> 5x2 + x - 25x - 5 = 5x2 - 80
<=> 5x2 - 5x2 + x - 25x = -80 + 5
<=> -24x = -75
<=> x = \(\dfrac{25}{8}\)
a)\(\left(x-2^2\right)-1=0\Rightarrow x-4-1=0\Rightarrow x=5\)