Câu 40** : Giá trị biểu thức: sin210o + sin230o + sin280o + sin260o bằng:
A, 0; B. 1; C. 2; D. 3 .
a) Tính giá trị của biểu thức 12 : (3 - m) với m = 0; m = 1; m = 2.
b) Trong ba giá trị của biểu thức tìm được ở câu a, với m bằng bao nhiêu thì biểu thức 12 : (3 - m) có giá trị lớn nhất?
a) Với m = 0, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 0) = 12 : 3 = 4
Với m = 1, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 1 ) = 12 : 2 = 6
Với m = 2, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 2) = 12 : 1 = 12
b) Vì 4 < 6 < 12 nên trong ba giá trị tìm được ở câu a, với m = 2 thì biểu thức 12 : (3 – m) có giá trị lớn nhất.
Câu 11: Giá trị biểu thức sau tận cùng bằng bao nhiêu chữ số 0?
A = 20 × 21 × 22 × ... × 99 × 100
Trả lời: Giá trị biểu thức sau có tận cùng là
… chữ số 0.
Giúp nhanh ạ 🥲🧫
số lượng số có chữ số hàng đơn vị bằng 5 là: 9 - 2 + 1 = 8 (số)
Tổng số lượng chữ số 0 ở các số hạng: 9-2+1 + 2 = 10
Số lượng chữ số 0 phái sau cùng: 10 + 8 = 18
Câu 36: Cho a > 0; b > 0 và giá trị bằng S = 2a ^ 2 + b ^ 2 + 4/a + 54/b Khi biểu thức S đạt giá trị nhỏ nhất thị T = a + 2b có
Áp dụng AM-GM có:
\(2a^2+\dfrac{2}{a}+\dfrac{2}{a}\ge3\sqrt[3]{2a^2.\dfrac{2}{a}.\dfrac{2}{a}}=6\)
\(b^2+\dfrac{27}{b}+\dfrac{27}{b}\ge3\sqrt[3]{b^2.\dfrac{27}{b}.\dfrac{27}{b}}=27\)
Cộng vế với vế => \(S\ge33\)
Dấu = xảy ra <=> a=1; b=3
=>T= a+2b=7
câu 1 : số các số nguyên x sao cho biểu thức biểu thức A=3/(x+2) nhận giá trị nguyên là ....
câu 2 : nếu 0<a<b<c<d<e<f và (a-b)(c-d)(e-f)x= (b-a)(d-c)(f-e) thì x =....
câu 3 : A= \(\frac{10}{\left(x+2\right)^2+5}\)
giá trị lớn nhất của biểu thức là ....
câu 4 : giá trị nhỏ nhất của biểu thức : A = \(\left|x-7\right|\) + 6 -x . Là ....
HELP ME
Câu 1: Có 4 giá trị
Câu 3: \(A\le\dfrac{10}{5}=2\)
Câu 39**: Với góc nhọnα tuỳ ý, giá trị biểu thức: sin4α+cos4α+2sin2αcos2α bằng:
A . 0 ; B. 1; C . 2 ; D. 3 .
Câu 1. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 2. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 3. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Hãy giải ba câu hỏi này
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
Bài1:
Ta có: a2+ b2+c2+d2= a.(b+c+d)
=> a2+b2+c2+d2 -ab -ac -ad =0
=> 4a2+ 4b2+4c2+4d2-4ab -4ac -4ad=0
=> ( a2 - 4ab +4b2) + ( a2- 4ac + 4c2) +( a2 -4ad+ 4d2) + a2=0
=> ( a-2b)2 + ( a-2c)2 + (a-2d)2 + a2 =0
=> ....
KL: a=b=c=d=0
Câu 1 giá trị của x để biểu thức đạt giá trị nhỏ nhất là
A . B. C. . D. .
Câu 2 với x là số nguyên, giá trị lớn nhất của biểu thức là
A. . B. C. . D. 10.
Câu 3 chocân tại A, có . Khi đó chu vi bằng
A. 13cm B. 14cm C. 15cm D. 16cm
Cho biểu thức P=m -342
a) Tính giá trị của biểu thức P với x = 1000
b) Với giá trị nào của x thí biểu thức P có giá trị bằng 0 ?
a) P=X -342
= 1000 - 342
= 658
P = 0
=> X -342 = 0
=> X = 342
Cho biểu thức A=\(\frac{3x^3-14x^2+3x+36}{3x^3-19x^2+33x-9}\)
a) Tím giá trị của x để biểu thức A xác định
b)Tìm giá trị của x để biểu thức A có giá trị bằng 0
c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên
a, A xác định
\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)
\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)
\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)
b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)
\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)
\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)
c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)
\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)
Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)
Bài của Hùng rất thông minh
Đang định có cách khác mà dài hơn cách Hùng nên thui
^^ 2k5 kết bạn nhé