Những câu hỏi liên quan
MD
Xem chi tiết
SE
Xem chi tiết
NH
21 tháng 10 2019 lúc 12:32

Giải thử nha , đừng làm theo mình!

Vì x ; y là các số nguyên không âm 

\(\Rightarrow x\ge x-y=x^2+y^2+xy\ge2xy+xy=3xy\)

Nếu x = 0 thì - y = y2 => y = 0Nếu x > 0 kết hợp với x ≥ 3xy ta được 1 ≥ 3y , từ đó y = 0 => x = x2 => x = 1

Vậy phương trình có nghiệm ( x ; y ) là ( 0 ; 0 ) và ( 1 ; 0 ) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
AH
22 tháng 5 2021 lúc 22:40

3y^2 1 là sao bạn?

Bình luận (0)
KW
Xem chi tiết
TN
23 tháng 6 2016 lúc 21:53

a)Vì x,y ko âm =>x,y>0

=>ko tồn tại

b)Có vô số nghiệm x,y 

Vd:1 và 0

-2 và 3

-3 và 4

.....

Bình luận (0)
CW
23 tháng 6 2016 lúc 21:55

Thắng Nguyễn : x,y ko âm đâu có nghĩa là x,y > 0 

Theo tớ thì có 2 cặp:

x=0  và y = 1

x=1 và y=0

Bình luận (0)
TN
23 tháng 6 2016 lúc 21:56

Cold Wind:nhầm >= 0 :D

Bình luận (0)
KG
Xem chi tiết
LP
17 tháng 8 2023 lúc 13:59

Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))

Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\) 

\(\Leftrightarrow\dfrac{y^2}{4}=1\)

\(\Leftrightarrow y^2=4\)

\(\Leftrightarrow y=\pm2\)

Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)

 

Bình luận (0)
TA
17 tháng 8 2023 lúc 13:38

a

Bình luận (0)
NC
Xem chi tiết
H24
10 tháng 11 2016 lúc 22:15

Áp dụng bđt AM-GM ta có \(\left(x^2+1\right)\left(x^2+y^2\right)\ge2x.2xy=4x^2y..\)
\(\Rightarrow VT\ge VP\)
Dấu = xảy ra khi \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}\Rightarrow}\left(x,y\right)\in\left\{\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\right\}\)

Bình luận (0)
BA
Xem chi tiết
AN
4 tháng 11 2017 lúc 14:58

Cô Huyền giải nhầm rồi.

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)

\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)

\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương

Xét \(y\ge0\)

\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)

\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)

\(\Leftrightarrow y=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Tương tự cho trường hợp còn lại

Bình luận (0)
CH
3 tháng 11 2017 lúc 9:56

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)

\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)

TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)

TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)

Bình luận (0)
DV
Xem chi tiết
NL
Xem chi tiết
H24
11 tháng 1 2017 lúc 12:18

x=0 và y = 1

x=1 và y=0 

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

Bình luận (0)
DN
11 tháng 1 2017 lúc 12:41

A, 1 cặp

B, vô số cặp 

Chúc bạn học giỏi 

Tk cho mình nhé

Bình luận (0)