Những câu hỏi liên quan
NA
Xem chi tiết
LD
23 tháng 9 2020 lúc 15:43

a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( c - a )2

<=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2

<=> a2 + b2 + c2 - 2ab - 2bc - 2ca = 0 ( bớt a2 + b2 + c2 ở cả hai vế )

<=> a2 + b2 + c2 - 2( ab + bc + ca ) = 0

<=> a2 + b2 + c2 - 2.9 = 0

<=> a2 + b2 + c2 - 18 = 0

<=> a2 + b2 + c2 = 18

Xét ( a + b + c )2 ta có :

( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca 

                     = ( a2 + b2 + c2 ) + 2( ab + bc + ca )

                     = 18 + 2.9

                     = 18 + 18 = 36

=> ( a + b + c )2 = 36

=> a + b + c = 6 ( do a, b, c là các số dương )

Bình luận (0)
 Khách vãng lai đã xóa
AH
Xem chi tiết
AH
28 tháng 10 2021 lúc 16:40

Lời giải:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow \frac{abc}{c(a+b)}=\frac{abc}{a(b+c)}=\frac{bca}{b(c+a)}\)

\(\Leftrightarrow c(a+b)=a(b+c)=b(c+a)\)

\(\Leftrightarrow ac+bc=ab+ac=bc+ab\Leftrightarrow ab=bc=ac\)

\(\Rightarrow a=b=c\) (do $a,b,c>0$)

$\Rightarrow M=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1$

Bình luận (0)
PH
Xem chi tiết
NH
Xem chi tiết
H24
15 tháng 3 2021 lúc 19:00

undefined

Bình luận (0)
NL
Xem chi tiết
3Y
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
KL
30 tháng 5 2016 lúc 18:04

ta có a+b+c=6=> (a+b+c)^2=36

<=> a^2+b^2+c^2+2(ab+bc+ca)=36

<=> a^2+b^2+c^2=36-2(ab+bc+ca) (1)

theo đề bài ta có 

(a-b)^2+(b-c)^2+(a-c)^2=a^2+b^2+c^2

<=> a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=a^2+b^2+c^2

<=> 2(a^2+b^2+c^2)-2(ab+bc+ca)=a^2+b^2+c^2

<=>-2(ab+bc+ca )=-(a^2+b^2+c^2)

<=> ab+bc+ca=(a^2+b^2+c^2)/2 (2)

(1),(2)=> ab+bc+ca=[36-2(ab+bc+ca)]/2

2(ab+bc+ca)=36-2(ab+bc+ca)

4(ab+bc+ca)=36

vậy ab+bc+ca=9

Bình luận (0)
VQ
Xem chi tiết