Những câu hỏi liên quan
H24
Xem chi tiết
DL
Xem chi tiết
LD
Xem chi tiết
NT
Xem chi tiết
DH
21 tháng 11 2021 lúc 15:22

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

\(=\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{82}}+...+\frac{1}{\sqrt{100}}\right)\)

\(>\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\right)\)

\(>\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{10}{10}=10\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
HV
Xem chi tiết
NL
19 tháng 9 2019 lúc 0:14

Ý bạn là \(18< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 19\) ?

Ta có:

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{100}}\)

\(\Rightarrow A>\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{100}+\sqrt{101}}\)

\(\Rightarrow A>\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{2\left(\sqrt{101}-\sqrt{100}\right)}{\left(\sqrt{101}-\sqrt{100}\right)\left(\sqrt{101}+\sqrt{100}\right)}\)

\(\Rightarrow A>2\left(\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{101}-\sqrt{100}\right)\)

\(\Rightarrow A>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)

Tương tự:

\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)

\(\Rightarrow A< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)

Nhân liên hợp tử mẫu và rút gọn ta được (giống chứng minh >18 bên trên):

\(A< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{100}-1\right)=1+18=19\)

\(\Rightarrow18< A< 19\) (đpcm)

Bình luận (0)
HV
18 tháng 9 2019 lúc 20:20

giup minh vs

Bình luận (0)
NM
Xem chi tiết
TL
5 tháng 8 2020 lúc 11:57

\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)

đề bài là thế này ạ!?

Bình luận (0)
 Khách vãng lai đã xóa
DQ
Xem chi tiết
CQ
Xem chi tiết