hãy chứng tỏ rằng 72011-43 chia hết cho 100
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Hãy chứng tỏ rằng:
( 3^100 + 19^990 ) chia hết cho 2.
Ai k làm được bài này chứng tỏ IQ vẫn còn kém lắm
3^100 là số lẻ
19^990 là số lẻ
=>( 3^100 + 19^990 ) là số chẵn (lẻ+lẻ=chẵn)=>( 3^100 + 19^990 ) chia hết cho 2(số chẵn chia hết cho 2)
3X có tận cùng là số lẻ
Suy ra 3100 có chữ số tận cùng là số lẻ
19990 có chữ số tận cùng là số lẻ
Suy ra 3100 +19990 có tận cùng là : lẻ +lẻ = chẵn
Vậy 3100 +19990 chia hết cho 2
3^100 và 19^990 điều là số lẻ
(le +le)=chan
như vậy chia hết cho 2
chứng tỏ rằng 6^300+6^299+6^298 chia hết cho 43
\(=6^{298}\left(6^2+6+1\right)=6^{298}\cdot43⋮43\)
chứng tỏ rằng
10n + 53 chia hết cho 9
4343 - 1717 chia hết cho 10
a) Cho P = 1 + 3 + 32 + 33 +.......+ 3101. Chứng tỏ rằng P⋮13.
b) Cho B = 1 + 22 + 24 +.......+ 22020. Chứng tỏ rằng B ⋮ 21.
c) Cho A = 2 + 22 + 23 +........+ 220. Chứng tỏ A chia hết cho 5.
d) Cho A = 1 + 4 + 42 + 43 +..........+ 498. Chứng tỏ A chia hết cho 21.
e) Cho A = 119 + 118 + 117 +.........+ 11 + 1. Chứng tỏ A chia hết cho 5.
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
chứng tỏ rằng A=1 cộng 4 cộng 42 cộng 43 cộng ... cộng 42021 chia hết cho 21
A = 1 + 4 + 42 + 43 + ... + 42021
A = 40 + 41 + 42 + 43 +...+ 42021
Xét dãy số 0; 1; 2; 3;...; 2021
Dãy số trên có số số hạng là:
(2021 - 0) : 1 + 1 = 2022
Vậy A có 2022 số hạng
vì 2022 : 3 = 674
Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó
A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)
A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)
A = 21 + 43.21 +... + 42019.21
A = 21.(1 + 43 + ... + 42019)
21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)
Giải thích các bước giải:
A = 1 + 4 + 42 + 43 + ... + 42021
A = 40 + 41 + 42 + 43 +...+ 42021
Xét dãy số 0; 1; 2; 3;...; 2021
Dãy số trên có số số hạng là:
(2021 - 0) : 1 + 1 = 2022
Vậy A có 2022 số hạng
vì 2022 : 3 = 674
Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó ta sẽ có
A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)
A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)
A = 21 + 43.21 +... + 42019.21
A = 21.(1 + 43 + ... + 42019)
21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)
Vậy ta có thể biết A có thể chia hết cho 21 qua: 1+4+42+43+...+42021
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
Hãy chứng tỏ rằng số 123456789 chia hết cho 3 mà không phải thực hiện phép chia
Hãy chứng tỏ rằng số 123456789 chia hết cho 9 mà không phải thực hiện phép chia
A=350+65+140 có chia hết cho 7 không ? Tại sao ?
B=3.2.7.9.11-666 có chia hết cho 66 không ? Tại sao ?
này em chưa học mấy cái đó mà