Cho tam giác ABC, gọi M, N là trung điểm của các cạnh AB, AC. Biết MN=16cm
Tính BC
cho tam giác ABC. Gọi M,N lần lượt là trung điểm của các cạnh AB, AC. CMR: MN//BC, MN=1/2BC
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
Cho tam giác ABC , có BC = 12cm . Gọi M , N lần lượt là trung điểm của các cạnh AB , AC. Ta có : *
A MN = 7cm
B MN = 6cm
C MN = 5cm
D MN = 3cm
Bài 9 (1 điểm) Cho tam giác ABC có M là điểm thuộc cạnh BC sao cho BC = 3 x MC và N là điểm thuộc cạnh AC sao cho AC = 4 x AN. Kéo dài MN cắt AB kéo dài tại P. Tính tỉ số diện tích tam giác PAN và tam giác ABC.
Bài 10 (1 điểm) Cho tam giác ABC có M là trung điểm AB. N là điểm thuộc cạnh AC sao cho AC = 3 x NC. Gọi P là trung điểm AN, Q là trung điểm MN. Tính diện tích tam giác PQN biết diện tích tam giác ABC là 180cm2.
1 điểm
giúp mik nhé, mik đang cần gấp
Cho tam giác ABC gọi m, n theo thứ tự là trung điểm của các đoạn thẳng AB,AC a. Tính độ dài cạnh BC .biết MN = 2,5 b. Gọi I,k theo thứ tự là trung điểm của các đường thẳng MC ,MB chứng minh tứ giác mnik là hình bình hành . c. Tam giác abc phải có thêm điều kiện gì để tứ giác mnik là hình chữ nhật vì sao
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC và MN=BC/2
=>BC=5cm
b: Xét ΔMBC có
MK/MB=MI/MC
nên KI//BC và KI=BC/2
=>MN//KI và MN=KI
=>MNIK là hình bình hành
Bài 4. (3,0 điểm) Cho tam giác ABC vuông tại A(AB < AC) , Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC và BC. a) Tính độ dài MN và AP. Biết BC = 10cm b) Tứ giác AMPN là hình gì? Vì sao? c) Kẻ đường cao AH của tam giác ABC và PK song song với AH (K thuộc AC). Chứng minh rằng BK vuông góc với HM.
a: Ta có: ΔABC vuông tại A
mà AP là đường trung tuyến
nên \(AP=\dfrac{BC}{2}=5\left(cm\right)\)
Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{1}{2}BC\)
=>\(MN=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
b: Xét ΔABC có
N,P lần lượt là trung điểm của CA,CB
=>NP là đường trung bình của ΔABC
=>NP//AB và \(NP=\dfrac{AB}{2}\)
Ta có: NP//AB
M\(\in\)AB
Do đó: NP//AM
ta có: \(NP=\dfrac{AB}{2}\)
\(AM=\dfrac{AB}{2}\)=MB
Do đó; NP=AM=MB
Xét tứ giác AMPN có
AM//NP
AM=NP
Do đó: AMPN là hình bình hành
Hình bình hành AMPN có \(\widehat{MAN}=90^0\)
nên AMPN là hình chữ nhật
cho tam giác ABC có cạnh BC=10cm. gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. tính độ dài đoạn MN.
Xét tam giác ABC có:
BM=AM(gt)
AN=CN(gt)
=>MN là đường trung bình của tam giác ABC
=>MN//BC và MN=1/2BC
=>MN=1/2*10=5cm
Cho tam giác ABC (AC>AB). Gọi M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC. AH là đường cao của tam giác ABC. a)CM: MN là trung trực của AH b)CM: Tứ giác MNPH là hình thang cân
Đừng có hỏi nữa
cho tam giác abc có ab= ac , trên cạnh ab lấy điểm m , trên cạnh ac lấy điểm n sao cho am=an. gọi h là trung điểm của bc
a, chứng minh góc abh = ach
b, gọi e là giao điểm của ah và nm . chứng minh tam giác ame = tam giác ane
c, chứng minh mn // bc
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
Cho tam giác ABC , định trên cạnh AB và AC các điểm D và E sao cho BD = CE . Gọi M là trung điểm của DE , N là trung điểm của BC . I và F lần lượt là giao điểm của MN với AC và AB . Chứng minh tam giác AIF cân