TH

Bài 4. (3,0 điểm) Cho tam giác ABC vuông tại A(AB < AC) , Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC và BC. a) Tính độ dài MN và AP. Biết BC = 10cm b) Tứ giác AMPN là hình gì? Vì sao? c) Kẻ đường cao AH của tam giác ABC và PK song song với AH (K thuộc AC). Chứng minh rằng BK vuông góc với HM.

NT

a: Ta có: ΔABC vuông tại A

mà AP là đường trung tuyến

nên \(AP=\dfrac{BC}{2}=5\left(cm\right)\)

Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{1}{2}BC\)

=>\(MN=\dfrac{1}{2}\cdot10=5\left(cm\right)\)

b: Xét ΔABC có

N,P lần lượt là trung điểm của CA,CB

=>NP là đường trung bình của ΔABC

=>NP//AB và \(NP=\dfrac{AB}{2}\)

Ta có: NP//AB

M\(\in\)AB

Do đó: NP//AM

ta có: \(NP=\dfrac{AB}{2}\)

\(AM=\dfrac{AB}{2}\)=MB

Do đó; NP=AM=MB

Xét tứ giác AMPN có

AM//NP

AM=NP

Do đó: AMPN là hình bình hành

Hình bình hành AMPN có \(\widehat{MAN}=90^0\)

nên AMPN là hình chữ nhật

 

Bình luận (0)

Các câu hỏi tương tự
DG
Xem chi tiết
TT
Xem chi tiết
NA
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
QP
Xem chi tiết
TH
Xem chi tiết
PH
Xem chi tiết
DD
Xem chi tiết