GPT: \(\frac{2}{x^2-3x+12}+\frac{6}{x^2+2x+12}=\frac{1}{x}\)
GPT: \(\frac{2}{x^2-3x+12}+\frac{6}{x^2+2x+12}=\frac{1}{x}\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{x^2-3x+12}+\frac{6x}{x^2+2x+12}=1\)
\(\Leftrightarrow\frac{2}{x+\frac{12}{x}-3}+\frac{6}{x+\frac{12}{x}+2}=1\)
Đặt \(x+\frac{12}{x}-3=t\)
\(\Rightarrow\frac{2}{t}+\frac{6}{t+5}=1\Leftrightarrow2\left(t+5\right)+6t=t\left(t+5\right)\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{12}{x}-3=-2\\x+\frac{12}{x}-3=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+12=0\\x^2-8x+12=0\end{matrix}\right.\) (casio)
1 . \(\frac{x-1}{12}-\frac{2x-12}{14}=\frac{3x-14}{25}-\frac{3x-12}{27}\)
2 . \(\frac{2x-1}{2}+\frac{2x+1}{3}=\frac{2x+7}{6}+\frac{2x+9}{7}\)
3 . \(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
4 . \(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
Tìm x:\(\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}-\frac{2x^2}{3x^2-12}\right):\frac{6+13x}{24-12}\)
Ai nhanh mk tick cho , mk cam on
Tìm x \(\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}-\frac{2x^2}{3x^2-12}\right):\frac{6+13x}{24-12}\)
Ai nhanh mk tick cho , mk cam on
Gpt
a) \(x^2+\sqrt{x+5}=5\)
b)\(\sqrt{x-\frac{x}{1}}-\sqrt{1-\frac{1}{x}}=1-\frac{1}{x}\)
c) \(\frac{x^2-x+1}{x^2-2x+1}+\frac{x^2+3x+1}{x^2+4x+1}=\frac{19}{12}\)
d) \(\sqrt{1-2x}+\sqrt{1+2x}=2-x^2\)
a) \(x^2-5+\sqrt{x+5}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\sqrt{x+5}=0\)(tự làm tiếp)
b) Đề hơi sai sai
c) Mik chưa nghĩ ra
d) \(\left(\sqrt{1-2x}-1\right)+\left(\sqrt{1+2x}-1\right)+x^2=0\)
\(\frac{-2x}{\sqrt{1-2x}+1}+\frac{2x}{\sqrt{1+2x}+1}+x^2=0\)(tự lm tiếp)
1 . \(\frac{x-1}{12}-\frac{2x-12}{14}=\frac{3x-14}{25}-\frac{4x-25}{27}\)
2 . \(\frac{3}{x-1}+\frac{4}{x-2}=\frac{5}{x-3}+\frac{6}{x-4}\)
3 . \(\frac{2x-1}{2}+\frac{2x+1}{3}=\frac{2x+7}{6}+\frac{2x+9}{7}\)
4 . \(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
GPT
\(x^2-3\sqrt[3]{3x-2}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
GPT
\(\frac{3}{3x^2-4x+1}+\frac{13}{3x^2+2x+1}=\frac{6}{x}\)