Những câu hỏi liên quan
ND
Xem chi tiết
HN
Xem chi tiết
H24
11 tháng 4 2022 lúc 8:16

\(\dfrac{a+1}{x-1}=1-a\) \(\left(đk:a,x>0;a,x< 1\right)\)

\(\Leftrightarrow\dfrac{a+1}{x-1}+1+a=0\)

\(\Leftrightarrow\dfrac{a+1+\left(1+a\right)\left(x-1\right)}{x-1}=0\)

\(\Leftrightarrow a+1+x-1+ax-a=0\)

\(\Leftrightarrow x+ax=0\)

\(\Leftrightarrow x\left(1+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\a=-1\left(ktm\right)\end{matrix}\right.\)

Vậy \(a=0\) thì pt \(\dfrac{a+1}{x-1}=1-a\) nhận giá trị nguyên

Bình luận (3)
H24
Xem chi tiết
DD
Xem chi tiết
BT
Xem chi tiết
NT
2 tháng 1 2024 lúc 14:53

ĐKXĐ: \(x\notin\left\{a-1;-a-2\right\}\)

\(\dfrac{x+1}{x-a+1}=\dfrac{x}{x+a+2}\)

=>\(\left(x+1\right)\left(x+a+2\right)=x\left(x-a+1\right)\)

=>\(x^2+ax+2x+x+a+2=x^2-ax+x\)

=>3x+a+2=x

=>2x=-a-2

=>\(x=\dfrac{-a-2}{2}\)

Để hệ vô nghiệm thì \(\left[{}\begin{matrix}\dfrac{-a-2}{2}=a-1\\\dfrac{-a-2}{2}=-a-2\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}-a-2=2a-2\\-a-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}a=0\\a=-2\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
TL
Xem chi tiết
TA
Xem chi tiết
GF
Xem chi tiết
GV
5 tháng 2 2020 lúc 8:22

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
27 tháng 1 2022 lúc 22:31

a/ Xét pt :

\(x^2-2\left(m-1\right)+2m-5=0\)

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)

\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m

b/ Phương trình cớ 2 nghiệm trái dấu

\(\Leftrightarrow2m-5< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

c/ Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)

\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)

Bình luận (0)
NT
27 tháng 1 2022 lúc 22:25

1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb với mọi m 

2, Vì pt có 2 nghiệm trái dấu 

\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)

\(=\left(2m-3\right)^2+6\ge6\forall m\)

Dấu ''='' xảy ra khi m = 3/2 

Vậy với m = 3/2 thì A đạt GTNN tại 6 

Bình luận (1)
NT
27 tháng 1 2022 lúc 22:27

1: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-16m+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

2: Để phương trình có hai nghiệm trái dấu thì 2m-5<0

hay m<5/2

3: \(A=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(2m-2\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14\)

\(=4m^2-12m+9+5\)

\(=\left(2m-3\right)^2+5\ge5\forall m\)

Dấu '=' xảy ra khi m=3/2

Bình luận (0)