Với giá trị nào của a thì nghiệm của phương trình sau là số dương
\(\frac{a+1}{x-1}=1-a\)
Cho phương trình \(\frac{a+3}{x+1}-\frac{5-3a}{x-2}=\)\(\frac{ax+3}{x^2-x-2}\).Với giá trị nào của a thì phương trình có nghiệm dương ko lớn hơn 1
Bài 2 : với giá trị nào của a thì phương trình \(\dfrac{a+1}{x-1}\)=1-a có nghiệm dương nhưng nhỏ hơn 1
\(\dfrac{a+1}{x-1}=1-a\) \(\left(đk:a,x>0;a,x< 1\right)\)
\(\Leftrightarrow\dfrac{a+1}{x-1}+1+a=0\)
\(\Leftrightarrow\dfrac{a+1+\left(1+a\right)\left(x-1\right)}{x-1}=0\)
\(\Leftrightarrow a+1+x-1+ax-a=0\)
\(\Leftrightarrow x+ax=0\)
\(\Leftrightarrow x\left(1+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\a=-1\left(ktm\right)\end{matrix}\right.\)
Vậy \(a=0\) thì pt \(\dfrac{a+1}{x-1}=1-a\) nhận giá trị nguyên
Với giá trị nào của a thì phương trình sau nhận x=1 là nghiệm:
x+a/a-x + x-a/a+x = a(3a+1)/a^2-x^2 (với a là tham số)
với giá trị nào của a thì phương trình sau vô nghiệm : x+1/x-a+1 = x/x+a+2
ĐKXĐ: \(x\notin\left\{a-1;-a-2\right\}\)
\(\dfrac{x+1}{x-a+1}=\dfrac{x}{x+a+2}\)
=>\(\left(x+1\right)\left(x+a+2\right)=x\left(x-a+1\right)\)
=>\(x^2+ax+2x+x+a+2=x^2-ax+x\)
=>3x+a+2=x
=>2x=-a-2
=>\(x=\dfrac{-a-2}{2}\)
Để hệ vô nghiệm thì \(\left[{}\begin{matrix}\dfrac{-a-2}{2}=a-1\\\dfrac{-a-2}{2}=-a-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-a-2=2a-2\\-a-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}a=0\\a=-2\end{matrix}\right.\)
Cho phương trình: 4x – 2 = k2 x + k ( 1) ( Với ẩn x với k là tham số )
a) Với giá trị nào của k thì PT (1) có nghiệm x = 1
b)Với giá trị nào của k thì PT (1) có nghiệm duy nhất? có vô số nghiệm? vô nghiệm ?
giúp mình được không, mình đang cần gấp
Cho phương trình: \(\frac{3a+1}{a+x}-\frac{a-1}{a-x}=\frac{2a\left(a^2-1\right)}{x^2-a^2}\)( với a là tham số )
a, Giải phương rình trên.
b, Tìm các giá trị nguyên dương của a để phương trình có nghiệm x là số nguyên tố
Câu 1 :Cho phương trình : \(\left(2x-3\right)^2=5\). Tính giá trị của biểu thức : A=\(\frac{2x^2}{x^4-3x^3-3x+1}\)
Câu 2: Cho phương trình :\(\frac{a+3}{x+1}-\frac{5-3a}{x-2}=\frac{ax+3}{x^2-x-2}\). Với giá trị nào của a thì phương trình có nghiệm dương không lớn hơn 1.
Câu 3 : Đa thức P(x) là đa thức bậc 4 và có hệ số cao nhất là 2 . biết P(1)=0 ; P(3)=0 ; P(5)=0 . háy tính giá trị của biểu thức : Q=P(-2)+7P(6)
:<< ai giúp với ạ
Cho phương trình x2-2mx+m-4=0 (1) (m là tham số)
a) Chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m.
b) Với giá trị nào của m thì phương trình (1) luôn có 2 nghiệm x1, x2 thỏa mãn \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x^2_2}{x_1}\)
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
a/ Xét pt :
\(x^2-2\left(m-1\right)+2m-5=0\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)
\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m
b/ Phương trình cớ 2 nghiệm trái dấu
\(\Leftrightarrow2m-5< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
c/ Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)
\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)
1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb với mọi m
2, Vì pt có 2 nghiệm trái dấu
\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)
\(=\left(2m-3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = 3/2
Vậy với m = 3/2 thì A đạt GTNN tại 6
1: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8\)
\(=\left(2m-4\right)^2+8>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
2: Để phương trình có hai nghiệm trái dấu thì 2m-5<0
hay m<5/2
3: \(A=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2m-2\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14\)
\(=4m^2-12m+9+5\)
\(=\left(2m-3\right)^2+5\ge5\forall m\)
Dấu '=' xảy ra khi m=3/2