Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 4 2019 lúc 5:27

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 3 2017 lúc 12:50

Chọn đáp án C.

4 a x 3 + 21 x 2 + 6 x + 2019 3 a x + 21 = 9 a x 2 + 14 x + 2 2

Vì f(x) = 0 có ba nghiệm phân biệt nên a ≠ 0

 

Từ bảng biến thiên, ta thấy phương trình g(x) = 0 có đúng hại nghiệm phân biệt.

Do đó phương trình  4 a x 3 + 21 x 2 + 6 x + 2019 3 a x + 21 = 9 a x 2 + 14 x + 2 2  có đúng hai nghiệm phân biệt.

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 10 2019 lúc 17:46

Điều kiện: x> -1

Ta có: 3x2- 6x+ ln( x+1) 3+1=0   hay 3x2- 6x+ 3ln( x+1)+1=0 

f(x)=3x2- 6x+ 3ln( x+1) +1=0 ⇒ f ' ( x ) = 6 x - 6 + 3 x + 1

Đạo hàm f’ (x) = 0 khi và chỉ khi (2x- 2) (x+ 1) +1=0

⇔ x = ± 1 2

 

Từ đây, ta có bảng biến thiên của f(x):

 

Nhìn vào bảng biến thiên ta sẽ có phương trình đã cho có 3 nghiệm phân biệt.

Chọn C.

Bình luận (0)
DY
Xem chi tiết
NL
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

Bình luận (0)
LS
Xem chi tiết
NC
24 tháng 4 2020 lúc 16:53

+) Ta có: P(x) = 0 có 3 nghiệm phân biệt 

=> Gọi 3 nghiệm đó là m; n ; p. 

=> P(x) = ( x - m ) ( x - p ) (x - n) 

=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )

Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm 

=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)

=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)

=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
19 tháng 3 2021 lúc 16:33

1.

Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)

\(f\left(x\right)\) xác định và liên tục trên R

\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)

\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)

\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)

\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)

\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)

\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)

Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt

Bình luận (0)
NL
19 tháng 3 2021 lúc 16:42

2.

Đặt \(t=g\left(x\right)=x.cosx\)

\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)

\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)

Hàm \(f\left(t\right)\) xác định và liên tục trên R

\(f\left(1\right)=1>0\)

\(f\left(-2\right)=-8< 0\)

\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m

Bình luận (0)
NL
19 tháng 3 2021 lúc 16:45

3. Chắc ngoặc thứ là \(\left(2m^2-2m+4040\right)\) ?

\(\Leftrightarrow\left(m^2-m+2021\right)x^3-2\left(m^2-m+2020\right)x^2-4x+m^2-m+2021=0\)

Do \(m^2-m+2020>0\), đặt \(m^2-m+2020=n^2\)

\(\Rightarrow\left(n^2+1\right)x^3-2n^2x^2-4x+n^2+1=0\)

Quy về bài số 1

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 7 2018 lúc 13:57

Đáp án A

Điều kiện cần: Giả sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng, khi đó

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 1 2017 lúc 15:58

Bình luận (0)
GJ
Xem chi tiết
NL
24 tháng 12 2020 lúc 13:44

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)

Bình luận (0)