Những câu hỏi liên quan
NN
Xem chi tiết
NT
20 tháng 10 2021 lúc 23:30

Câu 9:

Vì 2015;1020 đều chia hết cho 5

nên 2015+1020 là hợp số

Bình luận (0)
LK
21 tháng 10 2021 lúc 9:24

câu 9

Ta có 2515;1020⋮5

=>(2515+1020)⋮5

Bình luận (0)
NT
Xem chi tiết
NT
7 tháng 10 2023 lúc 22:12

Câu 1:

\(25^{15}+10^{20}\)

\(=5^{30}+5^{20}\cdot2^{20}\)

\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)

=>Đây là hợp số

Bình luận (0)
NB
Xem chi tiết
DN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
BN
2 tháng 12 2023 lúc 20:22

Để chứng minh rằng trong 7 số nguyên tố lớn hơn 3 bất kỳ, luôn tồn tại hai số có hiệu chia hết cho 18, ta sẽ sử dụng một phương pháp đơn giản.

Chọn 7 số nguyên tố lớn hơn 3: Đặt các số này lần lượt là p₁, p₂, p₃, p₄, p₅, p₆, p₇.

Xét các số pᵢ (i = 1, 2, …, 7):

Ta biết rằng mỗi số nguyên tố lớn hơn 3 đều có dạng 6k ± 1 (với k là một số nguyên).Nếu pᵢ ≡ 1 (mod 6), thì pᵢ - 1 ≡ 0 (mod 6) và pᵢ + 1 ≡ 2 (mod 6).Nếu pᵢ ≡ 5 (mod 6), thì pᵢ - 1 ≡ 4 (mod 6) và pᵢ + 1 ≡ 0 (mod 6).

Xét các hiệu của các số pᵢ:

Nếu có hai số pᵢ và pⱼ sao cho pᵢ - pⱼ = 18, thì hiệu này chia hết cho 18.Xét trường hợp:Nếu pᵢ ≡ 1 (mod 6) và pⱼ ≡ 5 (mod 6), thì pᵢ - pⱼ = 18.Nếu pᵢ ≡ 5 (mod 6) và pⱼ ≡ 1 (mod 6), cũng có pᵢ - pⱼ = 18.

Vậy, luôn tồn tại hai số nguyên tố lớn hơn 3 trong 7 số đã cho có hiệu chia hết cho 18. 🌟

Bình luận (0)
NP
Xem chi tiết
NP
9 tháng 3 2017 lúc 16:23

NHANH NÀO

Bình luận (0)
LK
Xem chi tiết
NL
Xem chi tiết