\(5^{x-1}+3.5^{x+1}=1900\)
TÌM X
Tìm số nguyên x
a) 0100 - (31 - x) = 40
b) 280 - (x - 140) : 35 = 270
c) ( 1900 - 2x) : 35 - 32 = 16
d) 2^2x-1 : 4 = 8^3
e) (x + 2)^5 = 2^10
f) (3x - 4) . (x - 1)^3 = 0
g) (-2x + 1)^2 = 49
h) 1+2+3+...+x = 78
a: =>31-x=60
=>x=-29
b: =>(x-140):35=280-270=10
=>x-140=350
=>x=490
c: =>(1900-2x):35=48
=>1900-2x=1680
=>2x=220
=>x=110
d: =>\(2^{2x-1}=2^9\cdot2=2^{11}\)
=>2x-1=11
=>x=6
e: =>(x+2)^5=4^5
=>x+2=4
=>x=2
f: =>3x-4=0 hoặc x-1=0
=>x=4/3 hoặc x=1
g: =>(2x-1)^2=49
=>2x-1=7 hoặc 2x-1=-7
=>x=-3 hoặc x=4
h: =>x(x+1)/2=78
=>x(x+1)=156
=>x=12
bài 1: tìm x thuộc Z
m) (1900-2x):35 - 32 = 16
n) 720:[41 - (2x - 5)] = 2 mũ 3 . 5
o) (x-5).(x mũ 2 - 4) = 0
m , Ta có : \(\left(1900-2.x\right):3-32=16\)
\(\Leftrightarrow\frac{1900-2.x}{35}-32=16\)( Nhân hai vế với 35 )
\(\Leftrightarrow1900-2.x-1120=560\)
\(\Leftrightarrow780-2.x=560\)
\(\Leftrightarrow-2.x=560-780\)
\(\Leftrightarrow\) \(-2.x=-220\)
\(\Rightarrow x=110\)
Vậy x = 110
n, Ta có : \(720:\left[41-\left(2.x-5\right)\right]=2^3.5\)
\(\Leftrightarrow720:\left(41-2.x+5\right)=8.5\)
\(\Leftrightarrow720:\left(46-2.x\right)=40\)
\(\Leftrightarrow\frac{720}{46-2.x}=40\)
\(\Leftrightarrow\frac{720}{2.\left(23-x\right)}=40\)
\(\Leftrightarrow\frac{360}{23-x}\)
\(\Leftrightarrow360=40.\left(23-x\right)\)
\(\Leftrightarrow9=23-x\)
\(\Leftrightarrow x=14\)
Vậy x = 14
o, Ta có : \(\left(x-5\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}\)
Vậy \(x=5;-2;2\)
Tìm x,biết
A) (-3)^2x=9^5
B) 9.5^ x-3=6.5^6+3.5^6
C) 5^x+4-3.5^x+3=5^11.2
D) 3^x+2+4.3^x+1=7.3^6
E) 5^x+3=10^5.6^3:4^4.3^3
Tìm x, biết : 2x-3+3.|x-1|=4x+1
3.5^(-2x)+4/5^(2x)=4375
\(2x-3+3|x-1|=4x+1.\)
\(\Leftrightarrow3|x-1|=2x+4\)
*Với x < 1 ta có phương trình:
\(3\left(-x+1\right)=2x+4\)
\(\Leftrightarrow-3x+3=2x+4\)
\(\Leftrightarrow5x+1=0\)
\(\Leftrightarrow x=-\frac{1}{5}\)(TM)
*Với \(x\ge1\)ta có phương trình:
\(2x-3+3\left(x-1\right)=4x+1\)
\(\Leftrightarrow2x-3+3x-3=4x+1\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)(TM)
Vậy ............
tìm x,biết:
a)720:[41-(2x-5)]=2^3.5
b)x+(x+1)+(x+2)+...+(x+30)=1240
a) 720:[41-(2x-5)]=8*5
720:[41-(2x-5)]=40
41-(2x-5) = 720:40
41-(2x-5) = 18
2x-5 =41-18
2x-5 =23
2x =23+5
2x =28
x =28:2
x=14
b) x+(x+1)+(x+2)+......+(x+30)=1240
x+x+1+x+2+...+x+30=1240
(x+x+x+....+x) + (1+2+3+....30)=1240
31*x + \(\frac{\left(30+1\right)\cdot30}{2}\)=1240
31*x + 465 =1240
31*x=1240-465
31*x =775
x = 775:31
x=25
tick mình nhé
Tìm x:
|x+1/1.3|+|x+1/3.5|+|x+1/5.7|+...+|x+1/97.99|
\(5^{x-1}+3\cdot5^{x-1}=1900\)
tìm x
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4.5\right)=3.5\)
#)Giải :
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^2-x\right)\left(x+5\right)-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-5x-4,5=3,5\)
\(\Leftrightarrow-5x=8\)
\(\Leftrightarrow x=-\frac{8}{5}\)
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-6x=8\)
\(\Leftrightarrow x=\frac{-8}{6}=\frac{-4}{3}\)
Tìm x
5/1.2+5/2.3+...+5/99.100 - 2x=1/1.3+1/3.5+1/5.7+...1/97.99
\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)
\(\frac{99}{20}-2x=\frac{49}{99}\)
\(2x=\frac{99}{20}-\frac{49}{99}\)
\(2x=\frac{8821}{1980}\)
\(x=\frac{8821}{1980}:2\)
\(x=\frac{8821}{3960}\)