Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PH
Xem chi tiết
PQ
17 tháng 4 2020 lúc 8:50

bbnfcfib hzj 65637664ytcfc byc vvh v

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
TH
Xem chi tiết
NV
Xem chi tiết
TA
1 tháng 7 2017 lúc 9:42

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)

Bình luận (0)
TN
Xem chi tiết
TN
28 tháng 10 2018 lúc 19:50

@Akai Haruma chị giúp e với

Bình luận (0)
AH
28 tháng 10 2018 lúc 22:02

Lời giải:

Ta có:

\(A=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)

\(=(a+1)-\frac{b^2(a+1)}{b^2+1}+(b+1)-\frac{c^2(b+1)}{c^2+1}+(c+1)-\frac{a^2(c+1)}{a^2+1}\)

\(=(a+b+c+3)-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}\)

\(=6-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}(*)\)

Áp dụng BĐT AM-GM:

\(M\leq \frac{b^2(a+1)}{2b}+\frac{c^2(b+1)}{2c}+\frac{a^2(c+1)}{2a}\)

\(\Leftrightarrow M\leq \frac{a+b+c+ab+bc+ac}{2}=\frac{3+ab+bc+ac}{2}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

Do đó: \(M\leq \frac{3+3}{2}=3(**)\)

Từ \((*); (**)\Rightarrow A\geq 6-3=3\)

Vậy \(A_{\min}=3\Leftrightarrow a=b=c=1\)

Bình luận (0)
TN
Xem chi tiết
HN
9 tháng 8 2016 lúc 14:18

1) Từ \(-2\le a,b,c\le3\) suy ra : 

\(\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\Leftrightarrow a^2\le a+6\)

\(\left(b+2\right)\left(b-3\right)\le0\Leftrightarrow b^2-b-6\le0\Leftrightarrow b^2\le b+6\)

\(\left(c+2\right)\left(c-3\right)\le0\Leftrightarrow c^2-c-6\le0\Leftrightarrow c^2\le c+6\)

Cộng các bđt trên theo vế ta có đpcm

2) \(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\)

Từ giả thiết : \(x+1=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}=2\sqrt{\left(x+z\right)\left(x+y\right)}\)

Tương tự : \(y+1\ge2\sqrt{\left(y+x\right)\left(y+z\right)}\) , \(z+1\ge2\sqrt{\left(z+y\right)\left(z+x\right)}\)

\(\Rightarrow\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{8.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{64xyz}{xyz}=64\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y+z=1\\x+y=y+z=z+x\end{cases}\Leftrightarrow}x=y=z=\frac{1}{3}\)

Vậy Min P = 64 tại x = y = z = 1/3

Bình luận (0)
DT
Xem chi tiết
LF
7 tháng 2 2018 lúc 21:29

Áp dụng BĐT Mincopxki:

\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(a+b+c\right)^2\cdot\dfrac{81}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16\cdot\left(\dfrac{3}{2}\right)^2}}\)

\(=\dfrac{3\sqrt{17}}{2}\)

\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)

Bình luận (1)
TP
8 tháng 8 2019 lúc 16:12

Cách khác :)

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+16\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Rightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)

Tương tự : \(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c};\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)

Cộng theo vế của 3 bất đẳng thức :

\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge\left(a+b+c\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\sqrt{17}\cdot P\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

Áp dụng bất đẳng thức Cô-si:

Xét \(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)

\(\ge2\sqrt{\frac{16\cdot4a}{a}}+2\sqrt{\frac{16\cdot4b}{b}}+2\sqrt{\frac{16\cdot4c}{c}}-15\left(a+b+c\right)\)

\(=16\cdot3-15\cdot\frac{3}{2}=\frac{51}{2}\)

Ta có : \(\sqrt{17}\cdot P\ge\frac{51}{2}\)

\(\Leftrightarrow P\ge\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

Bình luận (2)
TP
Xem chi tiết
ML
4 tháng 8 2015 lúc 21:36

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

Bình luận (0)
H24
Xem chi tiết
KN
29 tháng 5 2020 lúc 12:32

Ta có: \(\frac{19a+3}{b^2+1}=\left(19a+3\right).\frac{1}{b^2+1}=\left(19a+3\right)\left(1-\frac{b^2}{b^2+1}\right)\)

\(\ge\left(19a+3\right)\left(1-\frac{b^2}{2b}\right)=\left(19a+3\right)\left(1-\frac{b}{2}\right)\)

\(=19a+3-\frac{19ab}{2}-\frac{3b}{2}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{19b+3}{c^2+1}\ge19b+3-\frac{19bc}{2}-\frac{3c}{2}\)(2); \(\frac{19c+3}{a^2+1}\ge19c+3-\frac{19ca}{2}-\frac{3a}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(A=\frac{19a+3}{b^2+1}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)\(\ge19\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-\frac{19\left(ab+bc+ca\right)}{2}+9\)

\(=\frac{35\left(a+b+c\right)}{2}-\frac{19\left(ab+bc+ca\right)}{2}+9\)

\(\ge\frac{35.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{19.3}{2}+9=\frac{105}{2}-\frac{57}{2}+9=33\)

Đẳng thức xảy ra khi a = b = c = 1.

Bình luận (0)
 Khách vãng lai đã xóa