Cho tam giác ABC, M, N, P lần lượt là trung điểm của AB, AC, BC.
Chứng minh BMNP là hình bình hành
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của AB,AC,BC. Chứng minh BMNP là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà \(BP=\dfrac{BC}{2}\)
nên MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành
1. cho hình bình hành ABCD, M và N lần lượt là trung điểm của AB và CD. Chứng minh các tứ giác AMCN và MBND là hình bình hành
2.Cho tam giác ABC có AB=3cm, AC=5cm. Các điểm M,N,P lần lượt là trung điểm của AB,AC và BC
a, Chứng minh tứ giác BMNP là hình bình hành
b,Tính chu vi của tứ giác BMNP nếu góc B=90 độ
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
Cho tam giác ABC vuông tại a gọi m n p lần lượt là trung điểm của ab ac BC a.. Chứng minh tứ giác Bmnp là hình bình hành b..Chứng minh tứ giác amnp là hình bình hành
Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MN//BP và \(MN=\dfrac{1}{2}BC=BP\)
Vậy BMNP là hbh
b, Vì BMNP là hbh mà I là trung điểm MP nên I là trung điểm BN
Vậy B,I,N thẳng hàng
Cho tam giác ABC vuông tại A. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh BMNP là hình bình hành
b) Chứng minh AMPN là hình chữ nhật
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = \(\frac{1}{2}\)AB (1)
mà M là trung điểm AB => AM = MB = \(\frac{1}{2}\)AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà ^NAM = ^CAB = 1v
=> AMMPN là hình chữ nhật
( chú ý 1v là 1 vuông = góc 90 độ )
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật
Cho tam giác ABC vuông tại A có Ab = 6cm, AC=8cm. Gọi M,N,P lần lượt là trung điểm của AB,AC,BC. a) Tính BC,MN b) Chứng minh tứ giác BCNM là hình thang c) Chứng minh tứ giác BMNP là hình bình hành
Cho tam giác ABC có E,D,M lần lượt là trung điểm của AB,AC,BC.
Chứng minh tứ giác BEDC là hình thang.
Chứng minh tứ giác BEDM là hình bình hành
Vì E,D là trung điểm AB,AC nên ED là đtb tg ABC
Do đó ED//BC nên BEDC là hình thang
Vì ED là đtb tg ABC nên \(ED=\dfrac{1}{2}BC\)
Mà \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC) nên \(ED=BM\)
Mà ED//BM (ED//BC) nên BEDM là hbh
cho tam giác ABC (AB<AC)có đường cao AH.Gọi M,N,K lần lượt là trung điểm của AB,AC,BC.Chứng minh rằng:
a)BCNM là hình thang
b)AMKN là hình bình hành
c)Gọi D là điểm đối xứng của H qua M.Chứng minh:tứ giác ADBH là hình bình hành
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
b: Xét ΔABC có
M là trung điểm của AB
K là trung điểm của BC
Do đó: MK là đường trung bình của ΔBAC
Suy ra: MK//AC và \(MK=\dfrac{AC}{2}\)
mà N\(\in\)AC và \(AN=\dfrac{AC}{2}\)
nên AN//MK và AN=MK
Xét tứ giác AMKN có
AN//MK
AN=MK
Do đó: AMKN là hình bình hành
Cho tam giác ABC nhọn có AB < AC. Gọi D, E, F lần lượt là trung điểm của AB, AC, BC.
Chứng minh tứ giác BDEF là hình bình hành?
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BF và DE=BF
hay BDEF là hình bình hành