cho a*b=455^12. tìm số dư trong phép chia a+b cho 4
Cho a.b=455^12. Tìm số dư của a+b trong phép chia cho
a) 3.
b) 4.
Cho a.b = \(455^{12}\). Tìm số dư trong phép chia 1 a + b chia cho 4
Cho a.b=455^12. Tìm số dư trong fép chia a+b cho 4
vâng đợi năm sau e giải cho chj a
Cho ab=455^12. Tìm số dư khi chia a+b cho 4
NX: \(455^{12}\equiv1\left(mod4\right)\)
\(\Rightarrow ab\equiv1\left(mod4\right)\)nên đặt \(a=4k+m,b=4h+n\left(k,h\in N:m,n\in[0,1,2,3]\right)\)
\(\Rightarrow mn\equiv1\left(mod4\right)\)
\(\Rightarrow\orbr{\begin{cases}m=n=1\\m=n=3\end{cases}}\)\(\Rightarrow m+n\equiv2\left(mod4\right)\)
Vậy ab chia 4 dư 2
Cho a.b = \(455^{12}\). Tìm số dư trong phép chia a + b chia cho 4
cho số tự nhiên a chia cho 6 dư 4, số tự nhiên b chia cho 12 được dư 5.tìm số dư trong phép chia a+b=2 cho 6
Tìm số tự nhiên b, biết khi chia 64 cho b thì được thương là 4 và số dư là 12.
Tìm số tự nhiên c, biết khi chia số 83 cho c thì được thương là 5 và số dư là 13.
Tìm số tự nhiên b, biết khi chia b cho 14 thì được thương là 5 và số dư là số lớn nhất có thể có trong phép chia ấy.
Tìm số tự nhiên a, biêt khi chia a cho 17 thì được thương là 6 và số dư là số lớn nhất có thể có trong phép chia ấy.
+)b=(64-12)/4=13
+)c=(83-13)/5=13
+)b=14*5+13=83
+)a=17*6+16=118
Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.
Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.
Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)
a) Có giá trị là số tự nhiên
b) Là phân số tối giản
Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3
b) Tìm số tự nhiên n sao cho 2n -1 chia hết cho 7
Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)
b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?
Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.
Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13
Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010
1.Thực hiện phép chia:
x^3+3+x-x^2 cho x+1
2.Cho A=2x^4-4x^3+x^2+3x-3 và B=2x^2-1
Hãy tìm số dư trong phép chia A cho B rồi viết dưới dạng A=B.Q+R
Bài 1:
\(=\dfrac{x^3-x^2+x+3}{x+1}\)
\(=\dfrac{x^3+x^2-2x^2-2x+3x+3}{x+1}\)
\(=x^2-2x+3\)