Những câu hỏi liên quan
H24
Xem chi tiết
XO
1 tháng 9 2019 lúc 19:32

Ta có : x = 1.2 + 2.3 + 3.4 + ... + 99.100

              = 1.(1 + 1) + 2.(2 + 1) + ... + 99.(99 + 1)

              = 1.1 + 1 + 2.2 + 2 + ... + 99.99 + 99

              = (1.1 + 2.2 + 3.3 + ... + 99.99) + (1 + 2 + 3 + ... + 99)

              = y + 99.(99 + 1) : 2

              = y + 99.50

              = y + 4950

=> x = y + 4950

=> x - y = 4950 

Vậy x - y = 4950 

Bình luận (0)

bn nhân 3 vào x và y rồi l x - y là s

Bình luận (0)
TP
Xem chi tiết
IY
5 tháng 3 2018 lúc 12:22

THAY X= -1; Y= 1 VÀO BIỂU THỨC

CÓ: \(\left(-1\right)^{100}.1^{100}+\left(-1\right)^{99}.1^{99}+\left(-1\right)^{98}.1^{98}+\left(-1\right)^2.1^2+\left(-1\right).1+1\)

\(=1+\left(-1\right)+1+...+1+\left(-1\right)+1\)

( gạch bỏ các cặp số 1+ (-1) )

\(=0+1\)

\(=0\)

KL: \(x^{100}y^{100}+x^{99}y^{99}+x^{98}y^{98}+...+x^2y^2+1=1\)TẠI X = -1; Y =1

CHÚC BN HỌC TỐT!!
 

Bình luận (0)
NN
Xem chi tiết
NT
14 tháng 7 2023 lúc 7:49

2:

a: =>101y+5050=5555

=>101y=505

=>y=5

b: =>3^y+1=3^5

=>y+1=5

=>y=4

Bình luận (0)
NC
Xem chi tiết
H24
Xem chi tiết
TT
23 tháng 6 2015 lúc 13:53

\(y=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(y=1-\frac{1}{10}=\frac{9}{10}\)

Bình luận (0)
SP
Xem chi tiết
PA
20 tháng 3 2020 lúc 21:42

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 4 2020 lúc 19:15

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 4 2020 lúc 10:19

Đặt :\(\left(xy\right)^2+2\left(yz\right)^4+...+100\left(zx\right)^{100}=A\)

Ta thấy các số mũ đều chẵn 

Nên \(A\ge0\left(1\right)\)

Đặt : \(-\left[\left(x+y+z\right)+2\left(yz+zx+xy\right)+...+99\left(x+y+z\right)\right]=B\)

Vì có dấu âm ở trước VT

Nên \(B\le0\left(2\right)\)

Từ 1 và 2 <=> \(A=B=0\)

\(< =>x=y=z=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
EC
24 tháng 7 2019 lúc 8:36

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

Bình luận (0)
CY
Xem chi tiết
EC
9 tháng 7 2019 lúc 8:41

1,+) Thay x = 5 vào biểu thức A, ta có:

A = 4.52 - 5.|5| + 2.|3 - 5|

A = 4.25 - 5.5 + 2.2

A = 100 - 25 + 4

A = 75 + 4 = 79

Thay x = 3 vào biểu thức A, ta có:

A = 4.32 - 5.|3| + 2.|3 - 3|

A = 4.9 - 5.3 + 2.0

A = 36 - 15 = 21

+) Ta có: B = xy + x2y2 + x3y + ... + x100y100

             B = xy + (xy)2 + (xy)3 + ... + (xy)100

Thay x = 1; y=  -1 vào biểu thức B, ta có:

B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ...  + [1.(-1)]100

B = -1 + 1 - 1 + ... + 1

B = 0

+) Thay x = 1 vào C, ta có:

C = 100.1100 + 99.199 + 98.198 + ... + 2.12  + 1

C = 100 + 99 + 98 + ... + 2 + 1

C = (100 + 1).[(100 - 1) : 1 + 1] : 2

C = 101.100 : 2

C = 5050

+) Thay x = 99 vào biểu thức D, ta có:

D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1

D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99  + 1).9996 + ... + (99 + 1).99 - 1

D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1

D = 99 - 1 = 98

Bình luận (0)
TN
Xem chi tiết
AH
4 tháng 1 2020 lúc 21:48

Lời giải:

Với $x=-1\Rightarrow x+1=0$. Do đó:

$A=(x^{2014}+x^{2013})+(x^{2012}+x^{2011})+...+(x^2+x)+1$

$=x^{2013}(x+1)+x^{2011}(x+1)+...+x(x+1)+1$

$=x^{2013}.0+x^{2011}.0+...+x.0+1=1$

----------------

\(x=-1; y=1\Rightarrow xy+1=0\)

\(B=(x^{100}y^{100}+x^{99}y^{99})+...+(x^2y^2+xy)+1\)

\(=x^{99}y^{99}(xy+1)+...+xy(xy+1)+1\)

\(=x^{99}y^{99}.0+....+xy.0+1=1\)

Bình luận (0)
 Khách vãng lai đã xóa