cho x,y,a,b là số thực thỏa mãn x^2 + y^2 =1 . C/m : x^2006/a^2003 + y^2006/b^2003 = 2/(a+b)^2003
Cho x,y,a,b là những số thực thỏa mãn:
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^2+y^2}{a+b}\)và\(x^2+y^2=1\)
Chứng minh: \(\dfrac{x^{2006}}{a^{1003}}+\dfrac{y^{2006}}{b^{1003}}=-\dfrac{2}{\left(a+b\right)^{1003}}\)
có hay không 2 số tự nhiên x và y có tổng bằng 2003 thỏa mãn đẳng thức :
x^2004 + y^2005 = 2006^2007
Cho \(a,b,c\ne0\).Tính giá trị của D = x2003 + y2003 + z2003
Biết x,y,z thỏa mãn\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Cho các số a, b, c khác 0. Tính giá trị của biểu thức : \(A=x^{2003}+y^{2003}+z^{2003}\)
Biết \(x,y,z\) thỏa mãn điều kiện : \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
=\(\left(\dfrac{x^2}{a^2}-\dfrac{x^2}{a^2+b^2+c^2}\right)+\left(\dfrac{y^2}{b^2}-\dfrac{y^2}{a^2+b^2+c^2}\right)\)+\(\left(\dfrac{z^2}{c^2}-\dfrac{z^2}{a^2+b^2+c^2}\right)=0\)
=\(x^2.\dfrac{b^2+c^2}{a^2+b^2+c^2}+y^2.\dfrac{a^2+c^2}{a^2+b^2+c^2}+z^2.\dfrac{a^2+b^2}{a^2+b^2+c^2}=0\)
Vì \(a,b,c\) \(\ne\)0 nên dấu "=" xảy ra khi \(x=y=z=0\)
\( \Rightarrow\)\(A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)
Chúc Bạn Học Tốt !!!
Có hay ko 2 số tự nhiên x,y có tổng 2003 thoả mãn x^2004 +y^2005 =2006^2007
cho x,y,a,b là các số thực thỏa mãn
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\) và \(x^2+y^2=1\)
CM : \(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{ \left( a+b\right)^{1003}}\)
\(\text{Đặt }x^2=m\ge0;y^2=n\ge0\Rightarrow m+n=1\)
\(\text{Ta có: }\frac{m^2}{a}+\frac{n^2}{b}=\frac{\left(m+n\right)^2}{a+b}\Leftrightarrow\left(a+b\right)\left(\frac{m^2}{a}+\frac{n^2}{b}\right)=\left(m+n\right)^2\left(\text{BĐT Bunhiacopki}\right)\)\(\Leftrightarrow m^2+n^2+\frac{b}{a}m^2+\frac{a}{b}n^2=m^2+n^2+2mn\)
\(\Leftrightarrow\frac{b}{a}m^2+\frac{a}{b}n^2-2mn=0\left(1\right)\)
\(\text{+Nếu }\frac{a}{b}< 0\text{ thì (1)}\Leftrightarrow-\left(\sqrt{-\frac{b}{a}m}\right)^2-2mn-\left(\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}\right)^2=0\)
\(\Leftrightarrow\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}=0\Leftrightarrow m=n=0\left(\text{loại}\right)\)
\(\text{Xét }\frac{a}{b}>0;\left(1\right)\Leftrightarrow\left(\sqrt{\frac{b}{a}m}\right)^2-2mn+\left(\sqrt{\frac{a}{b}n}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}-\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\sqrt{\frac{b}{a}m}=\sqrt{\frac{a}{b}n}\)
\(\Leftrightarrow bm=an\Leftrightarrow bx^2=ay^2\left(a,b>0\right)\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\left(\frac{x^2}{a}\right)^{1003}+\left(\frac{y^2}{b}\right)^{1003}=\frac{1}{\left(a+b\right)^{1003}}+\frac{1}{\left(a+b\right)^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\left(đpcm\right)\)
Cho x, y , x là các số thực thỏa mãn: \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^2+y^2}{a+b};x^2+y^2=1\)
Chứng minh:\(\dfrac{x^{2006}}{a^{1003}}+\dfrac{y^{2006}}{b^{1003}}=\dfrac{2}{\left(a+b\right)^{1003}}\)
1) Cho x,y,a,b là các số thực thỏa mãn :\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\) và \(x^2+y^2=1\)
Chứng minh \(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}????\)
2) Cho a,b,c là các số thực dương. Chứng minh bất đẳng thức:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)
\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)
\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)
\(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)
Cho a,b,x,y thuộc z mà.
a+b=x+y.
a^2+b^2=x^2+y^2.
CMR a^2003+b^2003=x^2003+y^2003
\(a+b=x+y\Leftrightarrow a-x=y-b\)
\(a^2+b^2=x^2+y^2\Leftrightarrow\left(a-x\right)\left(a+x\right)=\left(y-b\right)\left(y+b\right)\)
mà a-x = y-b\(\Rightarrow a+x=b+y\)
lại có a+b =x+y => 2a+b+x=2y+b+x=> a=y
suy ra b=x