\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
giai pt \(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
ĐK: \(x\ne-2;-3;-4;-5;-6\)
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\Leftrightarrow\left(x+2\right)\left(x+6\right)=32\)
\(\Leftrightarrow x^2+8x-20=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
\(...\Leftrightarrow\frac{1}{\left(x+2\right) \left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{18}\Leftrightarrow\frac{x+6}{\left(x+2\right)\left(x+6\right)}-\frac{x+2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\Rightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Rightarrow\left(x+2\right)\left(x+6\right)=72\)
=> \(x^2+8x-60=0\)
Phân tich đa thức thành nhân tử để tìm x
giải phương trình:\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/(x+5).(x+6) = 1/8
<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 - 1/x+6 = 1/8
<=> 1/x+2 - 1/x+6 = 1/8
<=> (x+6-x-2)/(x+2).(x+6) = 1/8
<=> 4/(x+2).(x+6) = 1/8
<=>(x+2).(x+6) = 4 : 1/8 = 32
<=>x^2 + 8x + 12 = 32
<=> x^2+8x+12-32=0
<=>x^2+8x-20=0
<=>(x-2).(x+10)=0
<=> x-2 =0 hoặc x+10 = 0
<=> x=2 hoặc x=-10
giang sinh an lanh $%###Xuyen gam cu chuoi###%$
Giải phương trình:
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
giải phương trình:
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
phân tích mẫu thành nhân tử r` tách ra rút gọn như kiểu bài tính của lớp 5 ấy
bài tương tự : Câu hỏi của Lê Phương Oanh - Toán lớp 8 | Học trực tuyến (https://h-o-c-24.vn/hoi-dap/question/179719.html)
Rút gon: \(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}\)
Ta có:\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}\)
\(=\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-6}\)
\(=\frac{1}{x-2}-\frac{1}{x-6}\)
\(=\frac{\left(x-6\right)-\left(x-2\right)}{\left(x-2\right)\left(x-6\right)}\)
\(=\frac{4}{\left(x-2\right)\left(x-6\right)}\)
Giups mk với ạ
Giair phương trình
\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
A=1/(x-2)(x-3) + 1/(x-3)(x-4) + 1/(x-4)(x-5) + 1/(x-5)(x-6)=1/8 (ĐKXĐ: x#2,x#3,x#4,x#5,x#6)
A= 1/x-2 -1/x-3 + 1/x-3 -1/x-4 .....-1/x-6=1/8
=>1/x-2 -1/x-6=1/8
=>8(x-6)-8(x-2)=(x-2)(x-6)
=> 8x-48-8x+16=x^2-8x+12
=> x^2-8x-20=0
=> (x-10)(x+2)=0 => x=10,x=-2 thuộc ĐKXĐ
Có cần thế ko ạ ??? Shinichi
Điều kiện xác định \(\hept{\begin{cases}x\ne2\\x\ne\\x\ne4\end{cases}3}\)
\(\hept{\begin{cases}x\ne5\\x\ne6\end{cases}}\)
Ta có : \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-3\right)\left(x-4\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(x^2-11+30=\left(x-5\right)\left(x-6\right)\)
Phương trình đã tương đương với
\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}-\frac{1}{x-5}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\Leftrightarrow\frac{4}{\left(x-6\right)\left(x-2\right)}=\frac{1}{8}\)
\(\Leftrightarrow x^2-8x-20=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(x-10=0\Leftrightarrow x=10\)
hoặc
\(x+2=0\Leftrightarrow x=-2\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)thỏa mãn điều kiện phương trình
Phương trình có nghiệm \(x=10;x=-2\)
1. Tính
\(P=\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}\)
\(P=\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30^{ }}\)
\(P=\frac{1}{\left(x^2+2x\right)+\left(3x+6\right)}+\frac{1}{\left(x^2+3x\right)+\left(4x+12\right)}+\frac{1}{\left(x^2+4x\right)+\left(5x+20\right)}+\frac{1}{\left(x^2+5x\right)+\left(6x+30\right)}\)
\(P=\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}\)
\(P=\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(P=\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)
\(P=\frac{1}{x+2}-\frac{1}{x+6}\)
\(P=\frac{x+6}{\left(x+2\right)\left(x+6\right)}-\frac{x+2}{\left(x+2\right)\left(x+6\right)}\)
\(P=\frac{x+6-x+2}{\left(x+2\right)\left(x+6\right)}\)
\(P=\frac{4}{\left(x+2\right)\left(x+6\right)}\)
Chúc cậu học tốt nha !
P= 1/ x2+5x+6 + 1/ x2+ 7x+12 + 1/x2+9x+20 +1/ x2+11x+30
P=1/ x2+2x+3x+6 + 1/ x2+3x+4x+12 + 1/ x 2+4x+5x+20 + 1/ x2+6x+5x+30
P=1/x.(x+2) + 3.(x+2) + 1/ x.(x+3)+4.(x+3) + 1/ x.(x+4) + 5.(x+4) + 1/ x.(x+6)+5.(x +6)
P= 1/ (x+2).(x+3) + 1/(x+3).(x+4)+1/ ( x+4).(x+5)+1/(x+6).(x+5)
P=1.(x+4)(x+5)(x+6) /(x+2)(x+3)(x+4).(x+5)(x+6) + 1.(x+2)(x+5)(x+6)/ ( x+2)(x+3)(x+4)(x+5)(x+6) + 1(x+2)(x+3)(x+6)/ (x+2)(x+3)(x+4)(x+5)(x+6) +1.(x+2)(x+3)(x+4)/(x+2)(x+3)(x+4)(x+5)(x+6)
P = (x+4)(x+5)(x+6)+(x+2)(x+5)(x+6)+(X+2)(x+3)(x+6)+(x+2)(x+3)(x+4)/(x+2)(x+3)(x+4)(x+5)(x+6)
P=4/(x+2)(x+6)
Sorry .mk tính sai kết quả phải là 2/(x+2).(x+6) còn phần trên đúng rồi
Giải phương trình sau :( phương trình chứa ẩn ở mẫu )
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\) (ĐKXĐ: x \(\ne\) -2; x \(\ne\) -3; x \(\ne\) -4; x \(\ne\) -5; x \(\ne\) -6)
\(\Leftrightarrow\) \(\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\) \(\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\)
\(\Rightarrow\) (x + 2)(x + 6) = 32
\(\Leftrightarrow\) (x + 2)(x + 6) - 32 = 0
\(\Leftrightarrow\) x2 + 6x + 2x + 12 - 32 = 0
\(\Leftrightarrow\) x2 + 8x - 20 = 0
\(\Leftrightarrow\) x2 + 8x + 16 - 36 = 0
\(\Leftrightarrow\) (x + 4)2 - 36 = 0
\(\Leftrightarrow\) (x + 4 - 6)(x + 4 + 6) = 0
\(\Leftrightarrow\) (x - 2)(x + 10) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=-10\left(TMĐK\right)\end{matrix}\right.\)
Vậy S = {2; -10}
Chúc bn học tốt!!
giải phương trình
a)\(\frac{7x+10}{x+1}\left(x^2-x-2\right)=\frac{7x+10}{x+1}\left(2x^2-3x-5\right)\)
b)\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
c)\(x^2+\frac{1}{x^2}+\frac{9x}{2}-\frac{9}{2x}+7=0\)