Những câu hỏi liên quan
MK
Xem chi tiết
PM
Xem chi tiết
TN
Xem chi tiết
MK
Xem chi tiết
AH
22 tháng 2 2020 lúc 17:52

Lời giải:

Vì $x,x+1$ là 2 số nguyên liên tiếp nên $x,x+1$ khác tính chẵn lẻ. Do đó trong 2 số $x,x+1$ tồn tại 1 số chẵn, 1 số lẻ

$\Rightarrow x(x+1)\vdots 2(1)$

Mặt khác:

Nếu $x,y$ cùng tính chẵn lẻ thì $x+y$ chẵn

$\Rightarrow x+y\vdots 2\Rightarrow xy(x+y)\vdots 2$

Nếu $x,y$ khác tính chẵn lẻ thì tồn tại 1 số chẵn, 1 số lẻ

$\Rightarrow xy\vdots 2\Rightarrow xy(x+y)\vdots 2$

Vậy tóm lại $xy(x+y)\vdots 2(2)$

Từ $(1);(2)\Rightarrow x(x+1)-xy(x+y)\vdots 2$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KL
8 tháng 9 2023 lúc 16:18

a) x(x² + x) + x(x + 1)

= x²(x + 1) + x(x + 1)

= (x + 1)(x² + x)

= x(x + 1)² ⋮ (x + 1)

b) xy² - yx² + xy

= xy(y - x + 1) ⋮ xy

Bình luận (0)
TA
Xem chi tiết
HP
Xem chi tiết
NT
13 tháng 2 2016 lúc 0:28

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  chia hết xy+1

Bình luận (0)
H24
13 tháng 2 2016 lúc 5:32

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

Hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  Chia hết xy+1

Bình luận (0)
TT
Xem chi tiết
NH
Xem chi tiết
DV
22 tháng 7 2015 lúc 21:17

6x+11y chia hết cho 31

=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)

=> 6x + 42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)

Bình luận (0)