Ôn tập chương II

MK

BÀI 20: Cho x, y là hai số nguyên . Chứng tỏ rằng x(x+1) - xy(x+y) chia hết cho 2

help!!!!!!!!!

AH
22 tháng 2 2020 lúc 17:52

Lời giải:

Vì $x,x+1$ là 2 số nguyên liên tiếp nên $x,x+1$ khác tính chẵn lẻ. Do đó trong 2 số $x,x+1$ tồn tại 1 số chẵn, 1 số lẻ

$\Rightarrow x(x+1)\vdots 2(1)$

Mặt khác:

Nếu $x,y$ cùng tính chẵn lẻ thì $x+y$ chẵn

$\Rightarrow x+y\vdots 2\Rightarrow xy(x+y)\vdots 2$

Nếu $x,y$ khác tính chẵn lẻ thì tồn tại 1 số chẵn, 1 số lẻ

$\Rightarrow xy\vdots 2\Rightarrow xy(x+y)\vdots 2$

Vậy tóm lại $xy(x+y)\vdots 2(2)$

Từ $(1);(2)\Rightarrow x(x+1)-xy(x+y)\vdots 2$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NN
Xem chi tiết
NH
Xem chi tiết
QB
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
HD
Xem chi tiết
TN
Xem chi tiết
XV
Xem chi tiết
MH
Xem chi tiết