Những câu hỏi liên quan
LD
Xem chi tiết
CK
Xem chi tiết
H24
7 tháng 8 2016 lúc 21:17

kí hiệu a l b là a chia hết cho b nhé
 xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1 
tương tự : y-1 l x-1 
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)

+> x=y \(\Rightarrow x^2-1\)\(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé 

Bình luận (0)
CK
7 tháng 8 2016 lúc 21:20

lm hộ t bài 1 nx

Bình luận (0)
H24
Xem chi tiết
LC
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
TP
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
CA
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
NT
28 tháng 7 2022 lúc 9:37

1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)

2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)

3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)

\(=\left(x+1\right)\left(a-b+c\right)\)

6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

Bình luận (0)
CL
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TM
Xem chi tiết
H24
27 tháng 3 2020 lúc 8:31

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

Bình luận (0)
 Khách vãng lai đã xóa
PB
27 tháng 3 2020 lúc 9:14

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

Bình luận (0)
 Khách vãng lai đã xóa
LK
27 tháng 3 2020 lúc 10:53

Bài 4:

Ta đặt: \(S=6^m+2^n+2\)

TH1: n chẵn thì:

\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)

Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)

Đồng thời S là scp

Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)

\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)

Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ

Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)

Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)

Thế vào ban đầu: \(S=8+2^n=36k^2\)

Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)

\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)

\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)

Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))

Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)

TH2: n là số lẻ

\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)

\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn

\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ

Chia tiếp thành 2TH nhỏ: 

TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ

Ta thu đc: m=1 và thế vào ban đầu

\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)

\(\Leftrightarrow2^{n-2}+2=k^2\)

Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)

Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)

\(\Leftrightarrow2^{n-3}+1=2t^2\)

\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3

Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)

TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ

Suy ra: n=1

Thế vào trên: \(6^m+4=4k^2\)

\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)

Và \(6^p-6^q=4\)

\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)

\(\Rightarrow k\notin Z\)

Vậy \(\left(m;n\right)=\left(1;3\right)\)

P/S: mk không kiểm lại nên có thể sai

Bình luận (0)
 Khách vãng lai đã xóa
VA
Xem chi tiết
CH
22 tháng 9 2017 lúc 11:03

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

Bình luận (0)