Tìm x biết
a ) 4x+2 +4x+1 = 1040
b) \(\left(x-\sqrt{3}\right)^2=\frac{3}{4}\)
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) Tính giá trị BT
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)\)tại giá trị x
Cho x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính giá trị biểu thức:
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-2\sqrt{x}}{\sqrt{2x^2}+2x}\right)^{2017}\) tại giá trị x đã cho
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\).
Tính giá trị phương trình: \(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2017}\)
tại giá trị của x.
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
Tính \(A=\left(4x^5+4x^4-x^3+1\right)^{19}+\left(\sqrt{x^5+4x^4-5x^3+5x+3}\right)^3+\left(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\right)\)
Ta có:
x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
= \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)
= \(\frac{1}{2}\)(\(\sqrt{2}\)-1)
=> 2x = \(\sqrt{2}\)-1
=> (2x)2= ( \(\sqrt{2}\)-1)2
=> 4x2= 2-2\(\sqrt{2}\)+1
=> 4x2= -2( \(\sqrt{2}\)-1)+1
=> 4x2= -4x +1 => 4x2+4x-1=0
Lại có:
A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19
= [ x3( 4x2+4x-1) +1]19
=1
A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3
= (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3
= 23=8
A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)
= \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)
Cộng 3 số vào ta được A
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính:
\(M=\left(4x^5+4x^4-x^3+1\right)^{19}+\left(\sqrt{4x^5+4x^4-5x^3+5x+3}\right)^3+\left(\frac{1-\sqrt{2}}{\sqrt{2x^2+2x}}\right)^{2016}\)
\(x=\frac{1}{2}\left(\sqrt{2}-1\right)\)
\(\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow4x^2=3-2\sqrt{2}=1-4.\frac{1}{2}\left(\sqrt{2}-1\right)=1-4x\)
\(\Leftrightarrow4x^2+4x-1=0\)
\(\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=1^{19}=1\)
\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1+4}^3=\sqrt{4}^3=8\)
\(\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}\left(4x^2+4x-1\right)+\frac{1}{2}}}=\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}}}=\sqrt{2}-2x=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)
\(M=1+8+1=10\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Câu 1. Tính giá trị của biểu thức:
a. N=\(\sqrt{\left(1-\sqrt{3}\right)^2}-6.\frac{\sqrt{3}}{\sqrt{3}}+\frac{12\sqrt{3}}{3}\)
Câu 2. Tìm x biết:
a. \(\sqrt{x^2+4x+4}-2\sqrt{4x+8}=0\)
b. \(2\sqrt{x}-9=1-3\sqrt{x}\)
Câu 3. Cho biểu thức P=\(\left(\frac{\sqrt{x}}{\sqrt{x}+2}-1\right).\left(\frac{x\sqrt{x}+8}{-2}\right)\)
a. Rút gon P
b. Xác định giá trị của P khi x >= 0,5
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) . Tính giá trị của biểu thức:
A= \(\left(4x^5+4x^4-x^3+1\right)^{19}+\left(\sqrt{4x^5+4x^4-5x^3+5x+3}\right)^3+\left(\dfrac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\right)^{2014}\) Làm đc thiên tài
Bạn ghi lộn đề rồi \(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2014}\) chứ không phải \(\left(\dfrac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\right)^{2014}\)
Ta có \(x=\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}=\dfrac{1}{2}\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2-1}\right)}}=\dfrac{1}{2}\sqrt{\left(\sqrt{2}-1\right)^2}=\dfrac{\left|\sqrt{2}-1\right|}{2}=\dfrac{\sqrt{2}-1}{2}\)
Vậy ta có \(x=\dfrac{\sqrt{2}-1}{2}\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow2x+1=\sqrt{2}\Leftrightarrow\left(2x+1\right)^2=2\Leftrightarrow4x^2+4x+1=2\Leftrightarrow4x^2+4x-1=0\)Ta lại có \(\left(4x^5+4x^4-x^3+1\right)^{19}=\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=\left(x^3.0+1\right)^{19}=1^{19}=1\)(1)
\(\left(\sqrt{4x^5+4x^4-5x^3+5x+3}\right)^3=\left(\sqrt{4x^5+4x^4-x^3-4x^3-4x^2+x+4x^2+4x-1+4}\right)^3=\left(\sqrt{x^3\left(4x^2+4x-1\right)-x^2\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\right)^3=\left(\sqrt{x^3.0+x^2.0+0+4}\right)^3=\left(\sqrt{4}\right)^3=2^3=8\left(2\right)\)
\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2014}=\left[\dfrac{1-\sqrt{2}.\dfrac{\sqrt{2}-1}{\sqrt{2}}}{\sqrt{2.\dfrac{3-2\sqrt{2}}{4}+\sqrt{2}-1}}\right]^{2014}=\left(\dfrac{\dfrac{1}{\sqrt{2}}}{\sqrt{\dfrac{3-2\sqrt{2}}{2}+\sqrt{2}-1}}\right)^{2014}=\left(\dfrac{\dfrac{1}{\sqrt{2}}}{\sqrt{\dfrac{3-2\sqrt{2}+2\sqrt{2}-2}{2}}}\right)^{2014}=\left(\dfrac{\dfrac{\dfrac{1}{\sqrt{2}}}{1}}{\sqrt{2}}\right)^{2014}=1^{2014}=1\left(3\right)\)
Cộng (1),(2),(3) theo vế ta được A=1+8+1=10
Vậy khi x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\) thì A=10
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)