Những câu hỏi liên quan
NP
Xem chi tiết
NT
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Bình luận (0)
NT
Xem chi tiết
NT
21 tháng 7 2021 lúc 15:15

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

Bình luận (0)
NT
21 tháng 7 2021 lúc 15:19

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

Bình luận (1)
TC
Xem chi tiết
NT
9 tháng 2 2021 lúc 12:36

a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)

\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)

Dấu '=' xảy ra khi 2x-4=0

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2

b) Ta có: \(\left|x+2\right|\ge0\forall x\)

\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)

\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)

Dấu '=' xảy ra khi x+2=0

hay x=-2

Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2

Bình luận (0)
AA
Xem chi tiết
LH
Xem chi tiết
HT
5 tháng 2 2021 lúc 15:15

undefined

Bình luận (0)
LH
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

Bình luận (0)
DM
Xem chi tiết
ST
14 tháng 7 2018 lúc 17:55

Ta có: \(B=\frac{x^4+1}{x^4+2x^2+1}=\frac{x^4+2x^2+1-2x^2-2+2}{x^4+2x^2+1}\)

\(=\frac{\left(x^2+1\right)^2-2\left(x^2+1\right)+2}{\left(x^2+1\right)^2}=1-\frac{2\left(x^2+1\right)}{\left(x^2+1\right)^2}+\frac{2}{\left(x^2+1\right)^2}\)

\(=1+2\left[\frac{1}{\left(x^2+1\right)^2}-2\cdot\frac{1}{x^2+1}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right]\)

\(=1+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2-\frac{1}{2}=\frac{1}{2}+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\)

Vì \(2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\ge0\Rightarrow B=\frac{1}{2}+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{x^2+1}-\frac{1}{2}=0\Leftrightarrow\frac{1}{x^2+1}=\frac{1}{2}\Leftrightarrow x^2+1=2\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy \(Bmin=\frac{1}{2}\Leftrightarrow x=\pm1\)

Bình luận (0)
HN
Xem chi tiết
H24
14 tháng 8 2017 lúc 15:25

UI CAU HOI NAY MINH CUNG GAP NHUNG KO BIET

Bình luận (0)
NC
27 tháng 2 2019 lúc 8:51

Câu hỏi của Nguyễn Thảo Nguyên - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo!

Bình luận (0)
KS
Xem chi tiết
TM
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Bình luận (0)
 Khách vãng lai đã xóa
TM
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Bình luận (0)
 Khách vãng lai đã xóa
US
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
YN
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Bình luận (0)
 Khách vãng lai đã xóa