rút gọn
(x/xy-y^2+2x-y/xy-x^2) . x^2y-xy2/x^-2xy+y^2
Rút gọn và tính giá trị. 2xy(x^2y-1/2xy)-2x^2y(xy-1/2y)+1 với x = -2 ; y = 1/2
vt đề tử tế giùm -_-
nhìn dell hỉu giề :)
bn ơi cs fải đề thế này ko?
\(2xy\left(x^2y-\frac{1}{2}xy\right)-2x^2y\left(xy-\frac{1}{2}y\right)+1\)
\(=\) \(2x^3y^2-x^2y^2-2x^3y^2+x^2y^2+1\)
\(=1\)
Vậy giá trị của biểu thức trên ko phụ thuộc vào biến nên giá trị của biểu thức luôn bằng 1
rút gọn phân thức:
\(\dfrac{x^3-4x^2+4x}{x^2-4}\)
\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)
\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}=\dfrac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\dfrac{y\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)
Rút gọn:
\(\frac{x+y}{y}\sqrt{\frac{x^3y^2+2x^2y^3+xy^4}{x^2+2xy+y^2}}\)
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Rút gọn biểu thức :
a) \(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)
b) \(\dfrac{5x^2-10xy+5y^2}{2x^2-2xy+2y^2}:\dfrac{8x-8y}{10x^3+10^3}\)
rút gọn biểu thức
a)\(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right).\frac{x^2y-xy^2}{x^2-2xy+y^2}\)
b) \(\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y^2-x^2}\right):\frac{2y}{x-y}\)
giúp tui zới tuôi đang cần gấp nha mn!!
T~T ai zúp tui tick cho
Rút gọn :
a ) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
Rút gọn :
a ) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)
\(=\frac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{y\left(x+y\right)}{2x-y}\)
\(=\frac{xy+y^2}{2x-y}\)
Bài 1. Rút gọn các biểu thức sau.
a) (x + 2y)(x2 - 2xy + 4y2) – (x - y)(x2 + xy + y2)
b) (x + 1)(x - 1)2 – (x + 2)(x2 - 2x + 4)
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)
Bài 2 Rút gọn
A=(\(x-\frac{4xy}{x+y}+y\)):(\(\frac{x}{x+y}-\frac{y}{x-y}-\frac{2xy}{x^2-y^2}\))
B=(\(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)):\(\frac{x^2+4x^2y^2+y^4-4}{x^2+y+xy+x}\):\(\frac{1}{2x^2+y+2}\)